Natural convective heat transfer in a concentric and a highly eccentric, vertical, open ended, annular channel has been investigated numerically. The inner to outer diameter ratio was 0.61, and the height to hydraulic diameter ratio was 18:1. Three heating modes were considered, all having uniform heat flux applied to one or both of the two walls, while the unheated wall was kept adiabatic. The wall temperature distribution, mass flow rate, and midchannel Nusselt number for the case with both walls heated were found to be in excellent agreement with available experimental results. For the same heating conditions, the heat transfer rate in the concentric annular channel was found to be greater than that in the highly eccentric channel, while the mass flow rate was higher in the eccentric channel. A novel finding for the eccentric channel was that the location of maximum velocity was intermediate between the narrow and wide gaps. Another novel observation, which was attributed to radiation effects, was that the fluid temperature in the wide gap region was lower than that of an adiabatic wall. The paper contains additional observations that would be of interest to designers of systems containing annular channels.

References

1.
Zanchini
,
E.
,
2008
, “
Mixed Convection With Variable Viscosity in a Vertical Annulus With Uniform Wall Temperatures
,”
Int. J. Heat Mass Transfer
,
51
(
1–2
), pp.
30
40
.
2.
Nobari
,
M. R. H.
, and
Asgarian
,
A.
,
2009
, “
A Numerical Investigation of Flow and Mixed Convection Inside a Vertical Eccentric Annulus
,”
Numer. Heat Transfer, Part A
,
55
(
1
), pp.
77
99
.
3.
Fattahi
,
E.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2011
, “
Lattice Boltzmann Simulation of Mixed Convection Heat Transfer in Eccentric Annulus
,”
Int. Commun. Heat Mass Transfer
,
38
(
8
), pp.
1135
1141
.
4.
Manglik
,
R. M.
, and
Fang
,
P. P.
,
1995
, “
Effect of Eccentricity and Thermal Boundary Conditions on Laminar Fully Developed Flow in Annular Ducts
,”
Int. J. Heat Fluid Flow
,
16
(
4
), pp.
298
306
.
5.
El-Shaarawi
,
M. A. L.
,
Abualhamayel
,
H. I.
, and
Mokheimer
,
E. M. A.
,
1998
, “
Developing Laminar Forced Convection in Eccentric Annuli
,”
Heat Mass Transfer
,
33
(
5–6
), pp.
353
362
.
6.
Hosseini
,
R.
,
Ramezani
,
M.
, and
Mazaheri
,
M. R.
,
2009
, “
Experimental Study of Turbulent Forced Convection in Vertical Eccentric Annulus
,”
Energy Convers. Manage.
,
50
(
9
), pp.
2266
2274
.
7.
Chauhan
,
A. K.
,
Prasad
,
B. V. S. S. S.
, and
Patnaik
,
B. S. V.
,
2014
, “
Numerical Simulation of Flow Through an Eccentric Annulus With Heat Transfer
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
8
), pp.
1864
1887
.
8.
Forooghi
,
P.
,
Abdi
,
I. A.
,
Dahari
,
M.
, and
Hooman
,
K.
,
2015
, “
Buoyancy Induced Heat Transfer Deterioration in Vertical Concentric and Eccentric Annuli
,”
Int. J. Heat Mass Transfer
,
81
, pp.
222
233
.
9.
Duan
,
Y.
, and
He
,
S.
,
2017
, “
Large Eddy Simulation of a Buoyancy Aided Flow in a Non-Uniform Channel-Buoyancy Effects on Large Flow Structures
,”
Nucl. Eng. Des
,
312
(1), pp. 191–204.
10.
de Vahl Davis
,
G.
, and
Thomas
,
R. W.
,
1969
, “
Natural Convection Between Concentric Vertical Cylinders
,”
Phys. Fluids
,
12
(
12
), pp.
198
207
.
11.
Schwab
,
T. H.
, and
De Witt
,
K. J.
,
1970
, “
Numerical Investigation of Free Convection Between Two Vertical Coaxial Cylinders
,”
AlChE J.
,
16
(
6
), pp.
1005
1010
.
12.
Keyhani
,
M.
,
Kulacki
,
F. A.
, and
Christensen
,
R. N.
,
1983
, “
Free Convection in a Vertical Annulus With Constant Heat Flux on the Inner Wall
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
454
459
.
13.
Al-Arabi
,
M.
,
El-Shaarawi
,
M. E. A.
, and
Khamis
,
M.
,
1987
, “
Natural Convection in Uniformly Heated Vertical Annuli
,”
Int. J. Heat Mass Transfer
,
30
(
7
), pp.
1381
1389
.
14.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1978
, “
An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli
,”
ASME J. Heat Transfer
,
100
(
4
), pp.
635
640
.
15.
Farouk
,
B.
, and
Guceri
,
S. I.
,
1982
, “
Laminar and Turbulent Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
631
636
.
16.
Hamad
,
F. A. W.
,
1989
, “
Experimental Study of Natural Convection Heat Transfer in Inclined Cylindrical Annulus
,”
Sol. Wind Technol.
,
6
(
5
), pp.
573
579
.
17.
Yeh
,
C. L.
,
2002
, “
Numerical Investigation of the Three-Dimensional Natural Convection Inside Concentric and Eccentric Annuli With Specified Wall Heat Flux
,”
JSME Int. J., Ser. B
,
45
(
2
), pp.
301
306
.
18.
Kassem
,
T.
,
2007
, “
Numerical Study of the Natural Convection Process in the Parabolic Cylindrical Solar Collector
,”
Desalination
,
209
(
1–3
), pp.
144
150
.
19.
Lu
,
G.
, and
Wang
,
J.
,
2008
, “
Experimental Investigation on Heat Transfer Characteristics of Water Flow in a Narrow Annulus
,”
Appl. Therm. Eng.
,
28
(
1
), pp.
8
13
.
20.
Mohammed
,
H. A.
,
Campo
,
A.
, and
Saidur
,
R.
,
2010
, “
Experimental Study of Forced and Free Convective Heat Transfer in the Thermal Entry Region of Horizontal Concentric Annuli
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
739
747
.
21.
Han
,
C. Y.
, and
Baek
,
S. W.
,
1999
, “
Natural Convection Phenomena Affected by Radiation in Concentric and Eccentric Horizontal Cylindrical Annuli
,”
Numer. Heat Transfer
,
36
(
5
), pp.
473
488
.
22.
Jha
,
B. K.
,
Yabo
,
I. B.
, and
Lin
,
J.-E.
,
2017
, “
Transient Natural Convection in an Annulus With Thermal Radiation
,”
Appl. Math.
,
8
(
9
), pp.
1351
1366
.
23.
Hosseini
,
R.
,
Heyrani-Nobari
,
M. R.
, and
Hatami
,
M.
,
2005
, “
An Experimental Study of Heat Transfer in an Open-Ended Vertical Eccentric Annulus With Insulated and Constant Heat Flux Boundaries
,”
Appl. Therm. Eng.
,
25
(
8–9
), pp.
1247
1257
.
24.
El-Shaarawi
,
M. A. I.
, and
Mokheimer
,
E. M. A.
,
1998
, “
Free Convection in Vertical Eccentric Annuli With a Uniformly Heated Boundary
,”
Int. J. Numer. Methods Heat Fluid Flow
,
8
(
5
), pp.
448
503
.
25.
El-Shaarawi
,
M. A. I.
, and
Mokheimer
,
E. M. A.
,
1999
, “
Developing Free Convection in Open-Ended Vertical Eccentric Annuli With Isothermal Boundaries
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
63
72
.
26.
Choueiri
,
G. H.
, and
Tavoularis
,
S.
,
2011
, “
An Experimental Study of Natural Convection in Vertical, Open-Ended, Concentric, and Eccentric Annular Channels
,”
ASME J. Heat Transfer
,
133
(
12
), p.
122503
.
27.
Maudou
,
L.
,
Choueiri
,
G. H.
, and
Tavoularis
,
S.
,
2013
, “
An Experimental Study of Mixed Convection in Vertical, Open-Ended, Concentric, and Eccentric Annular Channels
,”
ASME J. Heat Transfer
,
135
(
7
), p.
072502
.
28.
Kline
,
N.
, and
Tavoularis
,
S.
,
2016
, “
An Experimental Study of Forced Heat Convection in Concentric, and Eccentric Annular Channels
,”
ASME J. Heat Transfer
,
138
(
1
), p.
012502
.
29.
Tavoularis
,
S.
,
2011
, “
Rod Bundle Vortex Networks, Gap Vortex Streets, and Gap Instability: A Nomenclature and Some Comments on Available Methodologies
,”
Nucl. Eng. Des
,
241
(
7
), pp.
2624
2626
.
30.
Merzari
,
E.
,
Wang
,
S.
,
Ninokata
,
H.
, and
Theofilis
,
V.
,
2008
, “
Biglobal Linear Stability Analysis for the Flow in Eccentric Annular Channels and a Related Geometry
,”
Phys. Fluids
,
20
(
11
), p.
114104
.
31.
Merzari
,
E.
, and
Ninokata
,
H.
,
2009
, “
Anisotropic Turbulence and Coherent Structures in Eccentric Annular Channels
,”
Flow, Turbul. Combust
,
82
(
1
), pp.
93
120
.
32.
Ninokata
,
H.
,
Merzari
,
E.
, and
Khakim
,
A.
,
2009
, “
Analysis of Low Reynolds Number Turbulent Flow Phenomena in Nuclear Fuel Pin Subassemblies of Tight Lattice Configuration
,”
Nucl. Eng. Des.
,
239
(
5
), pp.
855
866
.
33.
Piot
,
E.
, and
Tavoularis
,
S.
,
2011
, “
Gap Instability of Laminar Flows in Eccentric Annular Channels
,”
Nucl. Eng. Des.
,
241
(11), pp.
4615
4620
.
34.
Guellouz
,
M. S.
, and
Tavoularis
,
S.
,
2000
, “
The Structure of Turbulent Flow in a Rectangular Channel Containing a Cylindrical Rod—Part 1: Reynolds-Averaged Measurements
,”
Exp. Therm. Fluid Sci.
,
23
(
1–2
), pp.
59
73
.
35.
Guellouz
,
M. S.
, and
Tavoularis
,
S.
,
2000
, “
The Structure of Turbulent Flow in a Rectangular Channel Containing a Cylindrical Rod—Part 2: Phase-Averaged Measurements
,”
Exp. Therm. Fluid Sci.
,
23
(
1–2
), pp.
75
91
.
36.
Gosset
,
A.
, and
Tavoularis
,
S.
,
2006
, “
Laminar Flow Instability in a Rectangular Channel With a Cylindrical Core
,”
Phys. Fluids
,
18
(
4
), p.
044108
.
37.
Chang
,
D.
, and
Tavoularis
,
S.
,
2006
, “
Convective Heat Transfer in Turbulent Flow Near a Gap
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
701
708
.
38.
Chang
,
D.
, and
Tavoularis
,
S.
,
2008
, “
Simulations of Turbulence, Heat Transfer and Mixing Across Narrow Gaps Between Rod-Bundle Subchannels
,”
Nucl. Eng. Des.
,
238
(
1
), pp.
109
123
.
39.
Choueiri
,
G. H.
, and
Tavoularis
,
S.
,
2014
, “
Experimental Investigation of Flow Development and Gap Vortex Street in an Eccentric Annular Channel—Part 1: Overview of the Flow Structure
,”
J. Fluid Mech.
,
752
, pp.
521
542
.
40.
Choueiri
,
G. H.
, and
Tavoularis
,
S.
,
2015
, “
Experimental Investigation of Flow Development and Gap Vortex Street in an Eccentric Annular Channel—Part 2: Effects of Inlet Conditions, Diameter Ratio, Eccentricity and Reynolds Number
,”
J. Fluid Mech.
,
768
, pp.
294
315
.
41.
Manca
,
O.
, and
Naso
,
V.
,
1990
, “
Experimental Analysis of Natural Convection and Thermal Radiation in Vertical Channels
,” ASME Heat Transfer Division, Winter Annual Meeting, Vol. 144, pp.
13
21
.
42.
Lide
,
D.
, and
Kehiaian
,
H.
,
1994
,
CRC Handbook of Thermophysical and Thermochemical Data
, Vol.
1
,
CRC Press
,
Boca Raton, FL
.
43.
Snyder
,
W. T.
, and
Goldstein
,
G. T.
,
1965
, “
An Analysis of Fully Developed Laminar Flow in an Eccentric Annulus
,”
AIChE J.
,
11
(
3
), pp.
462
467
.
44.
Sparrow
,
E. M.
,
Chrysler
,
G. M.
, and
Azevedo
,
L. F.
,
1984
, “
Observed Flow Reversals and Measured-Predicted Nusselt Numbers for Natural Convection in a One-Sided Heated Vertical Channel
,”
ASME J. Heat Transfer
,
106
(
2
), pp.
325
332
.
You do not currently have access to this content.