A computational study of natural convection from biheaters of finite thickness and finite conductivity placed on a finite thickness and a finite conductive bottom plate of a cavity is performed under constant heat input condition. Cavity is cooled by the sidewalls, while the top and backside of the bottom plate are insulated. Streamline, isotherms, and local heat flux distribution of the sidewalls are discussed. Base Grashof number is chosen as 2.5 × 106. Biheater maintains a nondimensional distance of 0.4 between them. The left heater is placed at a nondimensional distance of 0.2 from the left wall. Heater length ratio is varied from 0.4 to 1.7, while heater strength ratio is varied from 0.25 to 7.0. Optimum operating temperature condition is found from the analysis.

References

References
1.
Papanicolaou
,
E.
, and
Gopalakrishna
,
S.
,
1995
, “
Natural Convection in Shallow, Horizontal Layers Encountered in Electronic Cooling
,”
ASME J. Electron. Packag.
,
117
(
4
), pp.
307
316
.
2.
Ortega
,
A.
, and
Lall
,
B. S.
,
1996
, “
Natural Convection Air Cooling of a Discrete Source on a Conducting Board in a Shallow Horizontal Enclosure
,”
12th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), Austin, TX, Mar. 5–7, pp.
201
213
.
3.
Sezai
,
I.
, and
Mohammad
,
A. A.
,
2000
, “
Natural Convection From a Discrete Heat Source on the Bottom of a Horizontal Enclosure
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2257
2266
.
4.
Deng
,
Q. H.
,
Tang
,
G. F.
, and
Li
,
Y.
,
2002a
, “
Interaction Between Discrete Heat Sources in Horizontal Natural Convection Enclosures
,”
Int. J. Heat Mass Transfer
,
45
(
26
), pp.
5117
5132
.
5.
Deng
,
Q. H.
,
Tang
,
G. F.
, and
Li
,
Y.
,
2002b
, “
A Combined Temperature Scale for Analyzing Natural Convection in Rectangular Enclosures With Discrete Wall Heat Sources
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3437
3446
.
6.
Calcagni
,
B.
,
Marsili
,
F.
, and
Paroncini
,
M.
,
2005
, “
Natural Convective Heat Transfer in Square Enclosures Heated From below
,”
Appl. Therm. Eng.
,
25
(
16
), pp.
2522
2531
.
7.
Sharif
,
M. A. R.
, and
Mohammad
,
T. R.
,
2005
, “
Natural Convection in Cavities With Constant Flux Heating at the Bottom Wall and Isothermal Cooling From the Sidewalls
,”
Int. J. Therm. Sci.
,
44
(
9
), pp.
865
878
.
8.
Ichimiya
,
K.
, and
Saiki
,
H.
,
2005
, “
Behavior of Thermal Plumes From Two-Heat Sources in an Enclosure
,”
Int. J. Heat Mass Transfer
,
48
(
16
), pp.
3461
3468
.
9.
Oosthuizen
,
P. H.
, and
Paul
,
J. T.
,
2005
, “
Natural Convection in a Rectangular Enclosure With Two Heated Sections on the Lower Surface
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
587
596
.
10.
Dalal
,
A.
, and
Das
,
M. K.
,
2006
, “
Natural Convection in a Rectangular Cavity Heated From Below and Uniformly Cooled From the Top and Both Sides
,”
Numer. Heat Transfer, Part A
,
49
, pp.
301
322
.
11.
Bazylak
,
A.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2006
, “
Natural Convection in an Enclosure With Distributed Heat Sources
,”
Numer. Heat Transfer, Part A
,
49
(
7
), pp.
655
667
.
12.
Cheikh
,
N. B.
,
Beya
,
B. B.
, and
Lili
,
T.
,
2006
, “
Influence of Thermal Boundary Conditions on Natural Convection in a Square Enclosure Partially Heated From Below
,”
Int. Commun. Heat Mass Transfer
,
34
(
3
), pp.
369
379
.
13.
Zhao
,
F. Y.
,
Tang
,
G. F.
, and
Liu
,
D.
,
2006
, “
Conjugate Natural Convection in Enclosures With External and Internal Heat Sources
,”
Int. J. Heat Mass Transfer
,
44
(
3–4
), pp.
148
165
.
14.
Chen
,
T. H.
, and
Chen
,
L. Y.
,
2007
, “
Study of Buoyancy-Induced Flows Subjected to Partially Heated Sources on the Left and Bottom Walls in a Square Enclosure
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1219
1231
.
15.
Kuznetsov
,
G. V.
, and
Sheremet
,
M. A.
,
2010
, “
Conjugate Natural Convection in a Closed Domain Containing a Heat-Releasing Element With a Constant Heat-Release Intensity
,”
J. App. Mech. Tech. Phys.
,
51
(
5
), pp.
699
712
.
16.
Kuznetsov
,
G. V.
, and
Sheremet
,
M. A.
,
2011
, “
Conjugate Natural Convection in an Enclosure With a Heat Source of Constant Heat Transfer Rate
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
260
268
.
17.
Banerjee
,
S.
,
Mukhopadhyay
,
A.
,
Sen
,
S.
, and
Ganguli
,
R.
,
2008
, “
Natural Convection in a Bi-Heater Configuration of Passive Electronic Cooling
,”
Int. J. Therm. Sci.
,
47
(
11
), pp.
1516
1527
.
18.
Mukhopadhyay
,
A.
,
2010
, “
Analysis of Entropy Generation Due to Natural Convection in Square Enclosures With Multiple Discrete Heat Sources
,”
Int. Comm. Heat Mass Transfer
,
37
(
7
), pp.
867
872
.
19.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
20.
de Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench-Mark Numerical Solution
,”
Int. J. Num. Methods Fluids
,
3
(
3
), pp.
249
264
.
21.
Rao
,
G. M.
, and
Narasimham
,
G. S. V. L.
,
2007
, “
Laminar Conjugate Mixed Convection in a Vertical Channel With Heat Generating Components
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3561
3574
.
You do not currently have access to this content.