A new lattice Boltzmann (LB) model to solve the phase change problem, which is based on the enthalpy-transforming model has been developed in this paper. The problems of two-region phase change, natural convection of air, and phase change by convection are solved to verify the present LB model. In two-region phase change, the results of the present LB model agree well with that of analytical solution. The benchmark solutions are applied to evaluate the present LB model in natural convection of air and phase change material (PCM) as well. The results show that the present LB model is able to simulate the temperature distribution and capture the location of solid–liquid interface in the cavity accurately. Moreover, the present LB model is effective in computing owing to the fact that no iterations are necessary during the simulations.

References

1.
Shon
,
J.
,
Kim
,
H.
, and
Lee
,
K.
,
2014
, “
Improved Heat Storage Rate for an Automobile Coolant Waste Heat Recovery System Using Phase-Change Material in a Fin–Tube Heat Exchanger
,”
Appl. Energy
,
113
, pp.
680
689
.
2.
Mathur
,
A.
,
Kasetty
,
R.
,
Oxley
,
J.
,
Mendez
,
J.
, and
Nithyanandam
,
K.
,
2014
, “
Using Encapsulated Phase Change Salts for Concentrated Solar Power Plant
,”
Energy Procedia
,
49
, pp.
908
915
.
3.
Rao
,
Z.
,
Wang
,
S.
, and
Zhang
,
G.
,
2011
, “
Simulation and Experiment of Thermal Energy Management With Phase Change Material for Ageing LiFePO4 Power Battery
,”
Energy Convers. Manage.
,
52
(
12
), pp.
3408
3414
.
4.
Liu
,
C.
,
Rao
,
Z.
,
Zhao
,
J.
,
Huo
,
Y.
, and
Li
,
Y.
,
2015
, “
Review on Nanoencapsulated Phase Change Materials: Preparation, Characterization and Heat Transfer Enhancement
,”
Nano Energy
,
13
, pp.
814
826
.
5.
Yang
,
J.
,
Yang
,
L.
,
Xu
,
C.
, and
Du
,
X.
,
2015
, “
Numerical Analysis on Thermal Behavior of Solid–Liquid Phase Change Within Copper Foam With Varying Porosity
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1008
1018
.
6.
Rao
,
Z.
,
Wang
,
S.
, and
Peng
,
F.
,
2013
, “
Molecular Dynamics Simulations of Nano-Encapsulated and Nanoparticle-Enhanced Thermal Energy Storage Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
66
, pp.
575
584
.
7.
Rao
,
Z.
,
Huo
,
Y.
, and
Liu
,
X.
,
2014
, “
Dissipative Particle Dynamics and Experimental Study of Alkane-Based Nanoencapsulated Phase Change Material for Thermal Energy Storage
,”
RSC Adv.
,
4
(
40
), pp.
20797
20803
.
8.
Rao
,
Z.
,
You
,
X.
,
Huo
,
Y.
, and
Liu
,
X.
,
2014
, “
Dissipative Particle Dynamics Study of Nano-Encapsulated Thermal Energy Storage Phase Change Material
,”
RSC Adv.
,
4
(
74
), pp.
39552
39557
.
9.
Jiaung
,
W.-S.
,
Ho
,
J.-R.
, and
Kuo
,
C.-P.
,
2001
, “
Lattice Boltzmann Method for the Heat Conduction Problem With Phase Change
,”
Numer. Heat Transfer: Part B: Fundamentals
,
39
(
2
), pp.
167
187
.
10.
Guo
,
Z.
,
Shi
,
B.
, and
Wang
,
N.
,
2000
, “
Lattice BGK Model for Incompressible Navier–Stokes Equation
,”
J. Comput. Phys.
,
165
(
1
), pp.
288
306
.
11.
Peng
,
Y.
,
Shu
,
C.
, and
Chew
,
Y. T.
,
2003
, “
Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows
,”
Phys. Rev. E
,
68
(
2
).
12.
Miller
,
W.
,
2001
, “
The Lattice Boltzmann Method: A New Tool for Numerical Simulation of the Interaction of Growth Kinetics and Melt Flow
,”
J. Crystal Growth
,
230
(
1–2
), pp.
263
269
.
13.
Huang
,
R.
, and
Wu
,
H.
,
2014
, “
An Immersed Boundary-Thermal Lattice Boltzmann Method for Solid–Liquid Phase Change
,”
J. Comput. Phys.
,
277
(
0
), pp.
305
319
.
14.
De Fabritiis
,
G.
,
Mancini
,
A.
,
Mansutti
,
D.
, and
Succi
,
S.
,
1998
, “
Mesoscopic Models of Liquid/Solid Phase Transitions
,”
Int. J. Mod. Phys. C
,
9
(
08
), pp.
1405
1415
.
15.
Miller
,
W.
,
Succi
,
S.
, and
Mansutti
,
D.
,
2001
, “
Lattice Boltzmann Model for Anisotropic Liquid-Solid Phase Transition
,”
Phys. Rev. Lett.
,
86
(
16
), pp.
3578
3581
.
16.
Miller
,
W.
, and
Succi
,
S.
,
2002
, “
A Lattice Boltzmann Model for Anisotropic Crystal Growth From Melt
,”
J. Stat. Phys.
,
107
(
1/2
), pp.
173
186
.
17.
Miller
,
W.
,
Rasin
,
I.
, and
Pimentel
,
F.
,
2004
, “
Growth Kinetics and Melt Convection
,”
J. Crystal Growth
,
266
(
1–3
), pp.
283
288
.
18.
Miller
,
W.
,
Rasin
,
I.
, and
Succi
,
S.
,
2006
, “
Lattice Boltzmann Phase-Field Modelling of Binary-Alloy Solidification
,”
Phys. A: Stat. Mech. Appl.
,
362
(
1
), pp.
78
83
.
19.
Brent
,
A.
,
Voller
,
V.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer, Part A Appl.
,
13
(
3
), pp.
297
318
.
20.
Chatterjee
,
D.
,
2010
, “
Lattice Boltzmann Simulation of Incompressible Transport Phenomena in Macroscopic Solidification Processes
,”
Numer. Heat Transfer, Part B: Fundam.
,
58
(
1
), pp.
55
72
.
21.
Chatterjee
,
D.
,
2009
, “
An Enthalpy-Based Thermal Lattice Boltzmann Model for Non-Isothermal Systems
,”
EPL (Europhys. Lett.)
,
86
(
1
), p.
14004
.
22.
Semma
,
E. A.
,
El Ganaoui
,
M.
, and
Bennacer
,
R.
,
2007
, “
Lattice Boltzmann Method for Melting/Solidification Problems
,”
C. R. Méc.
,
335
(
5–6
), pp.
295
303
.
23.
Semma
,
E.
,
El Ganaoui
,
M.
,
Bennacer
,
R.
, and
Mohamad
,
A. A.
,
2008
, “
Investigation of Flows in Solidification by Using the Lattice Boltzmann Method
,”
Int. J. Therm. Sci.
,
47
(
3
), pp.
201
208
.
24.
Huber
,
C.
,
Parmigiani
,
A.
,
Chopard
,
B.
,
Manga
,
M.
, and
Bachmann
,
O.
,
2008
, “
Lattice Boltzmann Model for Melting With Natural Convection
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1469
1480
.
25.
Gao
,
D.
, and
Chen
,
Z.
,
2011
, “
Lattice Boltzmann Simulation of Natural Convection Dominated Melting in a Rectangular Cavity Filled With Porous Media
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
493
501
.
26.
Chen
,
Z.
,
Gao
,
D.
, and
Shi
,
J.
,
2014
, “
Experimental and Numerical Study on Melting of Phase Change Materials in Metal Foams at Pore Scale
,”
Int. J. Heat Mass Transfer
,
72
, pp.
646
655
.
27.
Song
,
W.
,
Zhang
,
Y.
,
Li
,
B.
, and
Fan
,
X.
,
2016
, “
A Lattice Boltzmann Model for Heat and Mass Transfer Phenomena With Phase Transformations in Unsaturated Soil During Freezing Process
,”
Int. J. Heat Mass Transfer
,
94
, pp.
29
38
.
28.
Eshraghi
,
M.
, and
Felicelli
,
S. D.
,
2012
, “
An Implicit Lattice Boltzmann Model for Heat Conduction With Phase Change
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2420
2428
.
29.
Feng
,
Y.
,
Li
,
H.
,
Li
,
L.
,
Bu
,
L.
, and
Wang
,
T.
,
2015
, “
Numerical Investigation on the Melting of Nanoparticle-Enhanced Phase Change Materials (NEPCM) in a Bottom-Heated Rectangular Cavity Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
81
, pp.
415
425
.
30.
Huang
,
R.
,
Wu
,
H.
, and
Cheng
,
P.
,
2013
, “
A New Lattice Boltzmann Model for Solid–Liquid Phase Change
,”
Int. J. Heat Mass Transfer
,
59
, pp.
295
301
.
31.
Huang
,
R.
, and
Wu
,
H.
,
2015
, “
Phase Interface Effects in the Total Enthalpy-Based Lattice Boltzmann Model for Solid–Liquid Phase Change
,”
J. Comput. Phys.
,
294
, pp.
346
362
.
32.
Huang
,
R.
, and
Wu
,
H.
,
2016
, “
Total Enthalpy-Based Lattice Boltzmann Method With Adaptive Mesh Refinement for Solid-Liquid Phase Change
,”
J. Comput. Phys.
,
315
, pp.
65
83
.
33.
Huo
,
Y.
, and
Rao
,
Z.
,
2015
, “
Lattice Boltzmann Simulation for Solid–Liquid Phase Change Phenomenon of Phase Change Material Under Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
86
, pp.
197
206
.
34.
Huo
,
Y.
, and
Rao
,
Z.
,
2017
, “
Investigation of Phase Change Material Based Battery Thermal Management at Cold Temperature Using Lattice Boltzmann Method
,”
Energy Convers. Manage.
,
133
, pp.
204
215
.
35.
Cao
,
Y.
,
Faghri
,
A.
, and
Chang
,
W. S.
,
1989
, “
A Numerical Analysis of Stefan Problems for Generalized Multi-Dimensional Phase-Change Structures Using the Enthalpy Transforming Model
,”
Int. J. Heat Mass Transfer
,
32
(
7
), pp.
1289
1298
.
36.
Cao
,
Y.
, and
Faghri
,
A.
,
1990
, “
A Numerical Analysis of Phase-Change Problems Including Natural Convection
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
812
816
.
37.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2002
, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E
,
65
(
4
), p.
046308
.
38.
Danaila
,
I.
,
Moglan
,
R.
,
Hecht
,
F.
, and
Le Masson
,
S.
,
2014
, “
A Newton Method With Adaptive Finite Elements for Solving Phase-Change Problems With Natural Convection
,”
J. Comput. Phys.
,
274
, pp.
826
840
.
39.
Hu
,
H.
, and
Argyropoulos
,
S. A.
,
1996
, “
Mathematical Modelling of Solidification and Melting: A Review
,”
Modell. Simul. Mater. Sci. Eng.
,
4
(
4
), p.
371
.
40.
Hortmann
,
M.
,
Perić
,
M.
, and
Scheuerer
,
G.
,
1990
, “
Finite Volume Multigrid Prediction of Laminar Natural Convection: Bench‐Mark Solutions
,”
Int. J. Numer. Methods Fluids
,
11
(
2
), pp.
189
207
.
41.
Mencinger
,
J.
,
2004
, “
Numerical Simulation of Melting in Two-Dimensional Cavity Using Adaptive Grid
,”
J. Comput. Phys.
,
198
(
1
), pp.
243
264
.
You do not currently have access to this content.