Experimental investigation on rotation and turning vane effects on heat transfer was performed in a two-pass rectangular internal cooling channel. The channel has an aspect ratio of AR = 2:1 and a 180 deg tip-turn, which is a scaled up model of a typical internal cooling passage of gas turbine airfoils. The leading surface (LS) and trailing surface (TS) are roughened with 45 deg angled parallel ribs (staggered P/e = 8, e/Dh = 0.1). Tests were performed in a pressurized vessel (570 kPa) where higher rotation numbers (Ro) can be achieved with a maximum Ro = 0.42. Five Reynolds numbers (Re) were examined (Re = 10,000–40,000). At each Reynolds number, five rotational speeds ( = 0–400 rpm) were considered. Results showed that rotation effects are stronger in the tip regions as compared to other surfaces. Heat transfer enhancement up to four times was observed on the tip wall at the highest rotation number. However, heat transfer enhancement is reduced to about 1.5 times with the presence of a tip turning vane at the highest rotation number. Generally, the tip turning vane reduces the effects of rotation, especially in the turn portion.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
321
328
.
3.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
4.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
, and
Ou
,
S.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
.
5.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1991
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
42
51
.
6.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kooper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Passage With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.
7.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
912
920
.
8.
Liu
,
Y.-H.
,
Huh
,
M.
,
Han
,
J.-C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in a Two-Pass Rectangular Channel (AR = 1:4) Under High Rotation Numbers
,”
ASME J. Heat Transfer
,
130
(
8
), p.
081701
.
9.
Zhou
,
F.
,
Lagrone
,
J.
, and
Acharya
,
S.
,
2007
, “
Internal Cooling in 4:1 AR Passages at High Rotation Numbers
,”
ASME J. Heat Transfer
,
129
(
12
), pp.
1666
1675
.
10.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y.-H.
, and
Han
,
J.-C.
,
2010
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR = 2:1) Two-Pass Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021001
.
11.
Taslim
,
M. E.
,
Bondi
,
L. A.
, and
Kercher
,
D. M.
,
1991
, “
An Experimental Investigation of Heat Transfer in an Orthogonally Rotating Channel Roughened With 45 Deg Criss-Cross Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
346
353
.
12.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
(
4
), pp.
847
857
.
13.
Fu
,
W.-L.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) With 45 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
(
3
), pp.
164
174
.
14.
Fu
,
W.-L.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2006
, “
Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45 Degree Ribbed Walls
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1130
1141
.
15.
Zhou
,
F.
, and
Acharya
,
S.
,
2008
, “
Heat Transfer at High Rotation Numbers in a Two-Pass 4:1 Aspect Ratio Rectangular Channel With 45 Deg Skewed Ribs
,”
ASME J. Turbomach.
,
130
(
2
), p.
021019
.
16.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
,
1988
, “
Local Heat/Mass Transfer Distributions Around Sharp 180 Deg. Turns in Two-Pass Smooth and Rib-Roughened Channels
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
91
98
.
17.
Schabacker
,
J.
,
Bolcs
,
A.
, and
Johnson
,
B. V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180 Deg Bend
,”
ASME
Paper No. 98-GT-544.
18.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J. C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90° Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4809
4822
.
19.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
(
3
), pp.
590
596
.
20.
Liou
,
T. M.
, and
Chen
,
C. C.
,
1999
, “
Heat Transfer in a Rotating Two-Pass Smooth Passage With a 180° Rectangular Turn
,”
Int. J. Heat Mass Transfer
,
42
(
2
), pp.
231
247
.
21.
Liou
,
T.-M.
,
Tzeng
,
Y.-Y.
, and
Chen
,
C.-C.
,
1999
, “
Fluid Flow in a 180 Deg Sharp Turning Duct With Different Divider Thicknesses
,”
ASME J. Turbomach.
,
121
(
3
), pp.
569
576
.
22.
Saha
,
K.
, and
Acharya
,
S.
,
2013
, “
Bend Geometries in Internal Cooling Channels for Improved Thermal Performance
,”
ASME J. Turbomach.
,
135
(
3
), p.
031028
.
23.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2009
, “
Analysis of Turbulent Flow in 180 Deg Turning Ducts With and Without Guide Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021011
.
24.
Schüler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2010
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021017
.
25.
Chen
,
W.
,
Ren
,
J.
, and
Jiang
,
H.
,
2011
, “
Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System
,”
ASME J. Turbomach.
,
133
(
4
), p.
041012
.
26.
Chu
,
H.-C.
,
Chen
,
H.-C.
, and
Han
,
J.-C.
,
2018
, “
Numerical Simulation of Flow and Heat Transfer in Rotating Cooling Passage With Turning Vane in Hub Region
,”
ASME J Heat Transfer
,
140
(
2
), p.
021701
.
27.
Lei
,
J.
,
Li
,
S.-J.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2013
, “
Heat Transfer in Rotating Multipass Rectangular Ribbed Channel With and Without a Turning Vane
,”
ASME J. Heat Transfer
,
135
(
4
), p.
041903
.
28.
Lei
,
J.
,
Li
,
S.-J.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2014
, “
Effect of a Turning Vane on Heat Transfer in Rotating Multipass Rectangular Smooth Channel
,”
J. Thermophys. Heat Transfer
,
28
(
3
), pp.
417
427
.
29.
Lei
,
J.
,
Su
,
P.
,
Xie
,
G.
, and
Lorenzini
,
G.
,
2016
, “
The Effect of a Hub Turning Vane on Turbulent Flow and Heat Transfer in a Four-Pass Channel at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
92
, pp.
578
588
.
30.
Wu
,
H.-W.
,
Zirakzadeh
,
H.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2018
, “
Heat Transfer in a Rib and Pin Roughened Rotating Multipass Channel With Hub Turning Vane and Trailing-Edge Slot Ejection
,”
ASME J. Therm. Sci. Eng. Appl.
, p.
021011
.
31.
Yang
,
S.-F.
,
Wu
,
H.-W.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2017
, “
Heat Transfer in a Smooth Rotating Multi-Passage Channel With Hub Turning Vane and Trailing-Edge Slot Ejection
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1
15
.
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng.
,
75
, pp.
3
8
.
33.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J. C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.
You do not currently have access to this content.