Two of the primary variables affecting junction temperature of semiconductor devices are the self-heating due to internal power dissipation within the device and the device's base (or ambient) temperature. For materials with temperature-independent material properties, the junction temperature is a linear function of these two variables, which allows for simple “scaling” of the junction temperature for arbitrary dissipation and/or base temperatures. In materials with temperature-dependent material properties, however, the relationship between junction temperature and either variable is nonlinear. The scaling law between junction temperature and dissipated power and base temperature for materials with temperature-dependent material properties are developed in this work. This scaling law allows for fast computation of junction temperature for any values of power dissipation and/or base temperature given the junction temperature for one specific instance of power dissipation and base temperature and hence may find applicability in fast electrothermal solvers.

References

1.
Lienhard
, IV,
J. H.
, and
Lienhard
,
V.
,
2012
,
A Heat Transfer Textbook
, 4th ed.,
Phlogiston Press
,
Cambridge, MA
, p.
63
.
2.
Cooke
,
H. F.
,
1986
, “
Precise Technique Finds FET Thermal Resistance
,”
Microwaves & RF
,
25
, pp.
85
87
.
3.
Kirchhoff
,
G.
,
1894
,
Vorlesungen Uber Die Theorie Der Warme
,
Barth, Leipzig
,
Germany
, p.
13
.
4.
Ditri
,
J.
,
2007
, “
Heat Conduction in Microwave Devices With Orthotropic and Temperature Dependent Thermal Conductivity
,”
IEEE Trans. Microwave Theory Tech.
,
55
(
3
), pp.
555
560
.
5.
Ozisik
,
M. N.
,
1980
,
Heat Conduction
,
Wiley
,
New York
.
6.
Santarelli
,
A.
,
DiGiacomo
,
V.
,
Cignani
,
R.
,
D'Angelo
,
S.
,
Niessen
,
D.
, and
Filicori
,
F.
,
2010
, “
Nonlinear Thermal Resistance Characterization for Compact Electrothermal GaN HEMT Modelling
,”
Fifth European Microwave Integrated Circuits Conference
(
EuMIC
), Paris France, Sept. 27–28, pp. 82–85.
7.
Wang
,
C.
,
Xu
,
Y.
,
Yu
,
X.
,
Ren
,
C.
,
Wang
,
Z.
,
Lu
,
H.
,
Chen
,
T.
,
Zhang
,
B.
, and
Xu
,
R.
,
2014
, “
An Electrothermal Model for Emperical Large-Signal Modeling of AlGaN/GaN HEMTs Including Self-Heating and Ambient Temperature Effects
,”
IEEE Trans. Microwave Theory Tech.
,
62
(
12
), pp. 2878–2887.
8.
King
,
J. B.
, and
Brazil
,
T. J.
,
2013
, “
Nonlinear Electrothermal GaN HEMT Model Applied to High-Efficiency Power Amplifier Design
,”
IEEE Trans. Microwave Theory Tech.
,
61
(
1
), pp. 444–454.
9.
Darwish
,
A. M.
,
Bayba
,
A. J.
,
Khorshid
,
A.
,
Rajaie
,
A.
, and
Hung
,
H. A.
,
2012
, “
Calculation of the Nonlinear Junction Temperature for Semiconductor Devices Using Linear Temperature Values
,”
IEEE Trans. Electron Devices
,
59
(
8
), pp. 2123–2128.
10.
Ditri
,
J.
, “
Efficient Fourier Series Solutions to Nonlinear Steady-State Heat Conduction Problems in Microwave Circuits
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
1
), pp.
110
119
.
11.
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Liley
,
P. E.
,
1966
,
Thermal Conductivity of Selected Materials
(National Standards Reference Data Series),
U.S. Bureau of Standards
, U.S. Government Printing Office, Washington, DC.
You do not currently have access to this content.