We recently showed theoretically that the infinite singularity of the thermal cloak designed by transformation thermodynamics could be eliminated by a new method—the path design of the heat flux without any approximation. In this paper, we present the experimental evidence of such a new strategy of thermal cloak, that is, a truly singularity-free thermal cloak. We fabricate such a transient thermal cloak device without using extreme material parameters. The experimental results show fully controlled, transient cloaking behavior, which are perfectly consistent with the theoretical derivations and simulated results. Since one can flexibly design the path of heat flux in the cloak, it has the large degree-of-freedom to construct thermal cloaks with the specific distributions of material parameters. The new method provides a new blue print for the transient thermal protection of a specific target.

References

1.
Guenneau
,
S.
,
Amra
,
C.
, and
Veynante
,
D.
,
2012
, “
Transformation Thermodynamics: Cloaking and Concentrating Heat Flux
,”
Opt. Express
,
20
(
7
), pp.
8207
8218
.
2.
Pendry
,
J. B.
,
Schurig
,
D.
, and
Smith
,
D. R.
,
2006
, “
Controlling Electromagnetic Fields
,”
Science
,
312
(
5781
), pp.
1780
1782
.
3.
Guenneau
,
S.
, and
Amra
,
C.
,
2013
, “
Anisotropic Conductivity Rotates Heat Fluxes in Transient Regimes
,”
Opt. Express
,
21
(
5
), pp.
6578
6583
.
4.
He
,
X.
, and
Wu
,
L. Z.
,
2013
, “
Design of Two-Dimensional Open Cloaks With Finite Material Parameters for Thermodynamics
,”
Appl. Phys. Lett.
,
102
(
21
), p.
211912
.
5.
Yang
,
T.
,
Huang
,
L.
,
Chen
,
F.
, and
Xu
,
W.
,
2013
, “
Heat Flux and Temperature Field Cloaks for Arbitrarily Shaped Objects
,”
J. Phys. D
,
46
(
30
), p.
305102
.
6.
Yang
,
T. Z.
,
Bai
,
B.
,
Gao
,
D.
,
Wu
,
L.
,
Li
,
B.
,
Thong
,
J. T. L.
, and
Qiu
,
C. W.
,
2015
, “
Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields
,”
Adv. Mater.
,
27
(
47
), pp.
7752
7758
.
7.
Hu
,
R.
,
Wei
,
X.
,
Hu
,
J.
, and
Luo
,
X.
,
2014
, “
Local Heating Realization by Reverse Thermal Cloak
,”
Sci. Rep.
,
4
, p.
3600
.
8.
Yang
,
T. Z.
,
Su
,
Y.
,
Xu
,
W.
, and
Yang
,
X. D.
,
2016
, “
Transient Thermal Camouflage and Heat Signature Control
,”
Appl. Phys. Lett.
,
109
(
12
), p.
121905
.
9.
He
,
X.
, and
Wu
,
L. Z.
,
2014
, “
Illusion Thermodynamics: A Camouflage Technique Changing an Object Into Another One With Arbitrary Cross Section
,”
Appl. Phys. Lett.
,
105
(
22
), p.
221904
.
10.
Shen
,
X. Y.
,
Li
,
Y.
,
Jiang
,
C. R.
, and
Huang
,
J. P.
,
2016
, “
Temperature Trapping: Energy-Free Maintenance of Constant Temperatures as Ambient Temperature Gradients Change
,”
Phys. Rev. Lett.
,
117
(
5
), p.
055501
.
11.
Narayana
,
S.
, and
Sato
,
Y.
,
2012
, “
Heat Flux Manipulation With Engineered Thermal Materials
,”
Phys. Rev. Lett.
,
108
(
21
), p.
214303
.
12.
Narayana
,
S.
,
Savo
,
S.
, and
Sato
,
Y.
,
2013
, “
Transient Heat Flux Shielding Using Thermal Metamaterials
,”
Appl. Phys. Lett.
,
102
(
20
), p.
201904
.
13.
Schittny
,
R.
,
Kadic
,
M.
,
Guenneau
,
S.
, and
Wegener
,
M.
,
2013
, “
Experiments on Transformation Thermodynamics: Molding the Flow of Heat
,”
Phys. Rev. Lett.
,
102
(
19
), p.
195901
.
14.
Ma
,
Y. G.
,
Lan
,
L.
,
Jiang
,
W.
,
Sun
,
F.
, and
He
,
S. L.
,
2013
, “
A Transient Thermal Cloak Experimentally Realized Through a Rescaled Diffusion Equation With Anisotropic Thermal Diffusivity
,”
NPG Asia Mater.
,
5
(
11
), p.
e73
.
15.
Han
,
T. C.
,
Yuan
,
T.
,
Li
,
B. W.
, and
Qiu
,
C. W.
,
2013
, “
Homogeneous Thermal Cloak With Constant Conductivity and Tunable Heat Localization
,”
Sci. Rep
,
3
(
1
), p.
1593
.
16.
Farhat
,
M.
,
Chen
,
P.-Y.
,
Bagci
,
H.
,
Amra
,
C.
,
Guenneau
,
S.
, and
Alu
,
A.
,
2015
, “
Thermal Invisibility Based on Scattering Cancellation and Mantle Cloaking
,”
Sci. Rep.
,
5
(
1
), p.
9876
.
17.
Xu
,
H. Y.
,
Shi
,
X. H.
,
Gao
,
F.
,
Sun
,
H. D.
, and
Zhang
,
B. L.
,
2014
, “
Ultrathin Three-Dimensional Thermal Cloak
,”
Phys. Rev. Lett.
,
112
(
5
), p.
054301
.
18.
Han
,
T. C.
,
Bai
,
X.
,
Gao
,
D. L.
,
Thong
,
J. T. L.
,
Li
,
B. W.
, and
Qiu
,
C. W.
,
2014
, “
Experimental Demonstration of a Bilayer Thermal Cloak
,”
Phys. Rev. Lett.
,
112
(
5
), p.
054302
.
19.
He
,
X.
, and
Wu
,
L. Z.
,
2013
, “
Thermal Transparency With the Concept of Neutral Inclusion
,”
Phys. Rev. E
,
88
(
3
), p.
033201
.
20.
Xu
,
G. Q.
,
Zhang
,
H. C.
,
Zou
,
Q.
, and
Jin
,
Y.
,
2017
, “
Predicting and Analyzing Interaction of the Thermal Cloaking Performance Through Response Surface Method
,”
Int. J. Heat Mass Transfer
,
109
(9), pp.
746
754
.
21.
Wu
,
L. Z.
,
2015
, “
Cylindrical Thermal Cloak Based on the Path Design of Heat Flux
,”
ASME J. Heat Transfer
,
137
(
2
), p.
021301
.
22.
Petiteau
,
D.
,
Guenneau
,
S.
,
Bellieud
,
M.
,
Zerrad
,
M.
, and
Amra
,
C.
,
2014
, “
Spectral Effectiveness of Engineered Thermal Cloaks in the Frequency Regime
,”
Sci. Rep.
,
4
, p.
7386
.
You do not currently have access to this content.