A semi-analytical solution of the thermal entrance problem with constant wall temperature for channel flow of Maxwell type viscoelastic fluids and Newtonian fluids, both with pressure dependent viscosity, is derived. A Fourier–Gauss pseudo-spectral scheme is developed and used to solve the variable coefficient parabolic partial differential energy equation. The dependence of the Nusselt number and the bulk temperature on the pressure coefficient is investigated for the Newtonian case including viscous dissipation. These effects are found to be closely interactive. The effect of the Weissenberg number on the local Nusselt number is explored for the Maxwell fluid with pressure-dependent viscosity. Local Nusselt number decreases with increasing pressure coefficient for both fluids. The local Nusselt number Nu for Newtonian fluid with pressure-dependent viscosity is always greater than Nu related to the viscoelastic Maxwell fluid with pressure-dependent viscosity.

References

References
1.
Graetz
,
L.
,
1883
, “
Uben die wärmeleitungsfähigkeit von Flüssigkeiten (On the Thermal Conductivity of Liquids—Part 1)
,”
Ann. Phys. Chem.
,
18
, pp.
79
94
.
2.
Graetz
,
L.
,
1885
, “
Uben die wärmeleitungsfähigkeit von Flüssigkeiten (On the Thermal Conductivity of Liquids—Part 2)
,”
Ann. Phys. Chem.
,
25
(
7
), pp.
337
357
.
3.
Nusselt
,
W.
,
1910
, “
die abhängigkeit der wärmebergangszahl von der rohrlänge (Dependence of the Heat Transfer Coefficient on the Tube Length)
,”
VDI Z.
,
54
, pp.
1154
1158
.
4.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
, pp.
78
138
.
5.
Lahjomri
,
J.
,
Quabarra
,
A.
, and
Alemany
,
A.
,
2002
, “
Heat Transfer by Laminar Hartmann Flow in Thermal Entrance Region With a Step Change in Wall Temperatures: The Graetz Problem Extended
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1127
1148
.
6.
Barrera
,
C.
,
Letelier
,
M. F.
,
Siginer
,
D. A.
, and
Stockle
,
J.
,
2016
, “
The Graetz Problem in Tubes of Arbitrary Cross-Section
,”
Acta Mech.
,
227
(
1
), pp. 3239–3246.
7.
Letelier
,
M. F.
,
Barrera
,
C.
, and
Siginer
,
D. A.
,
2017
, “
Analytical Solution of the Graetz Problem for Non-Linear Viscoelastic Fluids in Tubes of Arbitrary Cross-Section
,”
Int. J. Therm. Sci.
,
111
, pp.
369
378
.
8.
Akyildiz
,
F. T.
,
Siginer
,
D. A.
, and
Letelier
,
M. F.
,
2018
, “
Analytical Solution of Thermally Developing Heat Transfer in Tubes of Arbitrary Cross Section Including the Effects of Axial Conduction and Viscous Dissipation
,”
Int. J. Therm. Sci.
(submitted).
9.
Denn
,
M. M.
,
2008
,
Polymer Melt Processing
,
Cambridge University Press
,
Cambridge, UK
.
10.
Rajagopal
,
K. R.
,
Saccomandi
,
G.
, and
Vergori
,
L.
,
2012
, “
Flow of Fluids With Pressure and Shear-Dependent Viscosity Down an Inclined Plane
,”
J. Fluid Mech.
,
706
, pp.
173
189
.
11.
Renardy
,
M.
,
2003
, “
Parallel Shear Flows of Fluids With a Pressure-Dependent Viscosity
,”
J. Non-Newtonian Fluid Mech.
,
114
(
2–3
), pp.
229
236
.
12.
Goubert
,
A.
,
Vermant
,
J.
,
Moldenaers
,
P.
,
Göttfert
,
A.
, and
Ernst
,
B.
,
2001
, “
Comparison of Measurement Techniques for Evaluating the Pressure Dependence of the Viscosity
,”
Appl. Rheol.
,
11
, pp.
26
37
.
13.
Dealy
,
J. M.
, and
Wang
,
J.
,
2013
,
Melt Rheology and Its Applications in the Plastics Industry
,
2nd ed
,
Springer
,
Dordrecht, The Netherlands
.
14.
Le Roux
,
C.
,
2009
, “
Flow of Fluids With Pressure Dependent Viscosities in an Orthogonal Rheometer Subject to Slip Boundary Conditions
,”
Meccanica
,
44
(
1
), pp.
71
83
.
15.
Martinez-Boza
,
F. J.
,
Martin-Alfonso
,
M. J.
,
Callegos
,
C.
, and
Fernández
,
M.
,
2011
, “
High-Pressure Behavior of Intermediate Fuel Oils
,”
Energy Fuels
,
25
(
11
), pp.
5138
5144
.
16.
Hron
,
J.
,
Málek
,
J.
, and
Rajagopal
,
K. R.
,
2001
, “
Simple Flows of Fluids With Pressure-Dependent Viscosities
,”
Proc. Roy. Soc.
,
457
, pp.
1603
1622
.
17.
Housiadas
,
D. K.
,
2015
, “
An Exact Analytical Solution for Viscoelastic Fluids With Pressure-Dependent Viscosity
,”
J. Non-Newt. Fluid Mech.
,
223
, pp.
147
156
.
18.
Kalogirou
,
A.
,
Poyiadji
,
S.
, and
Georgiou
,
G. C.
,
2011
, “
Incompressible Poiseuille Flows of Newtonian Liquids With a Pressure-Dependent Viscosity
,”
J. Non-Newt. Fluid Mech
,
166
(
7–8
), pp.
413
419
.
19.
Barışık
,
A.
,
Yazıcıoğlu
,
A. G.
,
Çetin
,
B.
, and
Kakaç
,
S.
,
2015
, “
Analytical Solution of Thermally Developing Microtube Heat Transfer Including Axial Conduction, Viscous Dissipation and Rarefaction Effects
,”
Int. Comm. Heat Mass Transfer
,
67
, pp.
81
88
.
You do not currently have access to this content.