Open-cell metal foams exhibit distinctive advantages in fluid control and heat transfer enhancement in thermal and chemical engineering. The thermofluidic transport characteristics at pore scale such as topological microstructure and morphological appearance significantly affect fluid flow and conjugated heat transfer in open-cell metal foams, important for practically designed applications. The present study employed an idealized tetrakaidecahedron unit cell (UC) model to numerically investigate the transport properties and conjugated heat transfer in highly porous open-cell metal foams (porosity—0.95). The effects of foam ligaments and nodes (size and cross-sectional shape) on thermal conduction, fluid flow, and conjugated heat transfer were particularly studied. Good agreement was found between the present predictions and the results in open literature. The effective thermal conductivity was found to decrease with increasing node-size-to-ligament ratio, while the permeability and volume-averaged Nusselt number were increased. This indicated that the effects of node size and shape upon thermofluidic transport need to be considered for open-cell metal foams having high porosities.

References

References
1.
Lu
,
T. J.
,
Stoneb
,
H. A.
, and
Ashbya
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.
2.
Senn
,
S. M.
, and
Poulikakos
,
D.
,
2004
, “
Polymer Electrolyte Fuel Cells With Porous Materials as Fluid Distributors and Comparisons With Traditional Channeled Systems
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
410
418
.
3.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.
4.
Barletta
,
A.
,
Celli
,
M.
, and
Kuznetsov
,
A. V.
,
2013
, “
Convective Instability of the Darcy Flow in a Horizontal Layer With Symmetric Wall Heat Fluxes and Local Thermal Nonequilibrium
,”
ASME J. Heat Transfer
,
136
(
1
), p.
012601
.
5.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2005
, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
995
1004
.
6.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2015
, “
Heat Transfer and Pressure Drop Characteristics of Finned Metal Foam Heat Sinks Under Uniform Impinging Flow
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021014
.
7.
Zhang
,
Q. C.
,
Yang
,
X. H.
,
Li
,
P.
,
Huang
,
G. Y.
,
Feng
,
S. S.
,
Shen
,
C.
, and
Lu
,
T. J.
,
2015
, “
Bioinspired Engineering of Honeycomb Structure—Using Nature to Inspire Human Innovation
,”
Prog. Mater. Sci.
,
74
, pp.
332
400
.
8.
Yang
,
X. H.
,
Wang
,
W. B.
,
Yang
,
C.
,
Jin
,
L. W.
, and
Lu
,
T. J.
,
2016
, “
Solidification of Fluid Saturated in Open-Cell Metallic Foams With Graded Morphologies
,”
Int. J. Heat Mass Transfer
,
98
, pp.
60
69
.
9.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
,
2003
, “
Simulations of Flow Through Open Cell Metal Foams Using an idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
,
24
(
6
), pp.
825
834
.
10.
Bai
,
M.
, and
Chung
,
J. N.
,
2011
, “
Analytical and Numerical Prediction of Heat Transfer and Pressure Drop in Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
869
880
.
11.
Yang
,
X. H.
,
Kuang
,
J. J.
,
Lu
,
T. J.
,
Han
,
F. S.
, and
Kim
,
T.
,
2013
, “
A Simplistic Analytical Unit Cell Based Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
J. Phys. D: Appl. Phys.
,
46
(
25
), p.
255302
.
12.
Yang
,
X. H.
,
Bai
,
J. X.
,
Yan
,
H. B.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2014
, “
An Analytical Unit Cell Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Transp. Porous Media
,
102
(
3
), pp.
403
426
.
13.
Cunsolo
,
S.
,
Baillis
,
D.
,
Bianco
,
N.
,
Naso
,
V.
, and
Oliviero
,
M.
,
2016
, “
Effects of Ligaments Shape on Radiative Heat Transfer in Metal Foams
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
2
), pp.
477
488
.
14.
Cunsolo
,
S.
,
Iasiello
,
M.
,
Oliviero
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K.
, and
Naso
,
V.
,
2015
, “
Lord Kelvin and Weaire–Phelan Foam Models: Heat Transfer and Pressure Drop
,”
ASME J. Heat Transfer
,
138
(
2
), p.
022601
.
15.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
793
799
.
16.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
Simulation of Thermal Transport in Open-Cell Metal Foams: Effect of Periodic Unit-Cell Structure
,”
ASME J. Heat Transfer
,
130
(
2
), p.
024503
.
17.
Huu
,
T. T.
,
Lacroix
,
M.
,
Huu
,
C. P.
,
Schweich
,
D.
, and
Edouard
,
D.
,
2009
, “
Towards a More Realistic Modeling of Solid Foam: Use of the Pentagonal Dodecahedron Geometry
,”
Chem. Eng. Sci.
,
64
(
24
), pp.
5131
5142
.
18.
Lucci
,
F.
,
Della Torre
,
A.
,
von Rickenbach
,
J.
,
Montenegro
,
G.
,
Poulikakos
,
D.
, and
Eggenschwiler
,
P. D.
,
2014
, “
Performance of Randomized Kelvin Cell Structures as Catalytic Substrates: Mass-Transfer Based Analysis
,”
Chem. Eng. Sci.
,
112
, pp.
143
151
.
19.
Zafari
,
M.
,
Panjepour
,
M.
,
Meratian
,
M.
, and
Emami
,
M. D.
,
2016
, “
CFD Simulation of Forced Convective Heat Transfer by Tetrakaidecahedron Model in Metal Foams
,”
J. Porous Media
,
19
(
1
), pp.
1
11
.
20.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.
21.
Bhattacharya
,
A. A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
22.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
.
23.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.
24.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.
You do not currently have access to this content.