In this study, micro-encapsulated phase change material (microPCM) was successfully synthesized by emulsion polymerization method, using magnesium sulfate heptahydrate (MSH) as core material and urea resin (UR) as shell material. The surface morphologies and particle size distributions of the microPCM were tested by scanning electron microscopy (SEM) and laser particle size analyzer. The chemical structure of microPCM was analyzed by Fourier-transform infrared spectroscopy (FTIR). The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity coefficient instrument, respectively.

References

References
1.
Jamekhorshid
,
A.
,
Sadrameli
,
S. M.
, and
Farid
,
M.
,
2014
, “
A Review of Microencapsulation Methods of Phase Change Materials (PCMs) as a Thermal Energy Storage (TES) Medium
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
531
542
.
2.
Liu
,
C.
,
Rao
,
Z.
,
Zhao
,
J.
,
Huo
,
Y.
, and
Li
,
Y.
,
2015
, “
Review on Nanoencapsulated Phase Change Materials: Preparation, Characterization and Heat Transfer Enhancement
,”
Nano Energy
,
13
, pp.
814
826
.
3.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1597
1615
.
4.
Xu
,
B.
,
Li
,
P.
,
Chan
,
C.
, and
Tumilowicz
,
E.
,
2015
, “
General Volume Sizing Strategy for Thermal Storage System Using Phase Change Material for Concentrated Solar Thermal Power Plant
,”
Appl. Energy
,
140
, pp.
256
268
.
5.
Mathur
,
A.
,
Kasetty
,
R.
,
Oxley
,
J.
,
Mendez
,
J.
, and
Nithyanandam
,
K.
,
2014
, “
Using Encapsulated Phase Change Salts for Concentrated Solar Power Plant
,”
Energy Procedia
,
49
, pp.
908
915
.
6.
Xiao
,
X.
,
Zhang
,
P.
, and
Li
,
M.
,
2013
, “
Thermal Characterization of Nitrates and Nitrates/Expanded Graphite Mixture Phase Change Materials for Solar Energy Storage
,”
Energy Convers. Manage.
,
73
, pp.
86
94
.
7.
Pandiyarajan
,
V.
,
Chinnappandian
,
M.
,
Raghavan
,
V.
, and
Velraj
,
R.
,
2011
, “
Second Law Analysis of a Diesel Engine Waste Heat Recovery With a Combined Sensible and Latent Heat Storage System
,”
Energy Policy
,
39
(
10
), pp.
6011
6020
.
8.
Nomura
,
T.
,
Tsubota
,
M.
,
Okinaka
,
N.
, and
Akiyama
,
T.
,
2015
, “
Improvement on Heat Release Performance of Direct-Contact Heat Exchanger Using Phase Change Material for Recovery of Low Temperature Exhaust Heat
,”
ISIJ Int.
,
55
(
2
), pp.
441
447
.
9.
Nejman
,
A.
,
Cieslak
,
M.
,
Gajdzicki
,
B.
,
Goetzendorf-Grabowska
,
B.
, and
Karaszewska
,
A.
,
2014
, “
Methods of PCM Microcapsules Application and the Thermal Properties of Modified Knitted Fabric
,”
Thermochim. Acta
,
589
, pp.
158
163
.
10.
Mondal
,
S.
,
2008
, “
Phase Change Materials for Smart Textiles—An Overview
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1536
1550
.
11.
Safavi
,
A.
,
Amani-Tehran
,
M.
, and
Latifi
,
M.
,
2015
, “
A New Approach to Theoretical Modeling of Heat Transfer Through Fibrous Layers Incorporated With Microcapsules of Phase Change Materials
,”
Thermochim. Acta
,
604
, pp.
24
32
.
12.
He
,
H. T.
,
Zhao
,
P.
,
Yue
,
Q. Y.
,
Gao
,
B. Y.
,
Yue
,
D. T.
, and
Li
,
Q.
,
2015
, “
A Novel Polynary Fatty Acid/Sludge Ceramsite Composite Phase Change Materials and Its Applications in Building Energy Conservation
,”
Renewable Energy
,
76
, pp.
45
52
.
13.
Lee
,
K. O.
,
Medina
,
M. A.
,
Raith
,
E.
, and
Sun
,
X. Q.
,
2015
, “
Assessing the Integration of a Thin Phase Change Material (PCM) Layer in a Residential Building Wall for Heat Transfer Reduction and Management
,”
Appl. Energy
,
137
, pp.
699
706
.
14.
Jin
,
X.
,
Medina
,
M. A.
, and
Zhang
,
X. S.
,
2014
, “
On the Placement of a Phase Change Material Thermal Shield Within the Cavity of Buildings Walls for Heat Transfer Rate Reduction
,”
Energy
,
73
, pp.
780
786
.
15.
Pomianowski
,
M.
,
Heiselberg
,
P.
, and
Zhang
,
Y.
,
2013
, “
Review of Thermal Energy Storage Technologies Based on PCM Application in Buildings
,”
Energy Build.
,
67
, pp.
56
69
.
16.
Rao
,
Z. H.
,
Wang
,
S. F.
, and
Zhang
,
Y. L.
,
2014
, “
Thermal Management With Phase Change Material for a Power Battery Under Cold Temperatures
,”
Energy Sources, Part A
,
36
(
20
), pp.
2287
2295
.
17.
Rao
,
Z. H.
,
Zhang
,
Y. L.
, and
Wang
,
S. F.
,
2012
, “
Energy Saving of Power Battery by Liquid Single-Phase Convective Heat Transfer
,”
Energy Educ. Sci. Technol., Part A
,
30
(
1
), pp.
103
112
.
18.
Rao
,
Z. H.
, and
Zhang
,
G. Q.
,
2011
, “
Thermal Properties of Paraffin Wax-Based Composites Containing Graphite
,”
Energy Sources, Part A
,
33
(
7
), pp.
587
593
.
19.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
20.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
21.
Zhao
,
C. Y.
, and
Wu
,
Z. G.
,
2011
, “
Heat Transfer Enhancement of High Temperature Thermal Energy Storage Using Metal Foams and Expanded Graphite
,”
Sol. Energy Mater. Sol. Cells
,
95
(
2
), pp.
636
643
.
22.
Zhao
,
C. Y.
, and
Zhang
,
G. H.
,
2011
, “
Review on Microencapsulated Phase Change Materials (MEPCMs): Fabrication, Characterization and Applications
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
3813
3832
.
23.
Xu
,
S.
,
Zou
,
L. M.
,
Ling
,
X. L.
,
Wei
,
Y. Z.
, and
Zhang
,
S. K.
,
2014
, “
Preparation and Thermal Reliability of Methyl Palmitate/Methyl Stearate Mixture as a Novel Composite Phase Change Material
,”
Energy Build.
,
68
(
Part A
), pp.
372
375
.
24.
Sari
,
A.
,
Alkan
,
C.
,
Karaipekli
,
A.
, and
Uzun
,
O.
,
2009
, “
Microencapsulated n-Octacosane as Phase Change Material for Thermal Energy Storage
,”
Sol. Energy
,
83
(
10
), pp.
1757
1763
.
25.
Marchi
,
S.
,
Pagliolico
,
S.
, and
Sassi
,
G.
,
2013
, “
Characterization of Panels Containing Micro-Encapsulated Phase Change Materials
,”
Energy Convers. Manage.
,
74
, pp.
261
268
.
26.
Wang
,
T. Y.
, and
Huang
,
J.
,
2013
, “
Synthesis and Characterization of Microencapsulated Sodium Phosphate Dodecahydrate
,”
J. Appl. Polym. Sci.
,
130
(
3
), pp.
1516
1523
.
27.
Wang
,
T. Y.
,
Huang
,
J.
,
Zhu
,
P. P.
, and
Xiao
,
J. B.
,
2013
, “
Fabrication and Characterization of Micro-Encapsulated Sodium Phosphate Dodecahydrate With Different Crosslinked Polymer Shells
,”
Colloid Polym. Sci.
,
291
(
10
), pp.
2463
2468
.
28.
Zhang
,
J.
,
Wang
,
S. S.
,
Zhang
,
S. D.
,
Tao
,
Q. H.
,
Pan
,
L.
,
Wang
,
Z. Y.
,
Zhang
,
Z. P.
,
Lei
,
Y.
,
Yang
,
S. K.
, and
Zhao
,
H. P.
,
2011
, “
In Situ Synthesis and Phase Change Properties of Na2SO4 Center Dot 10H(2)O@SiO2 Solid Nanobowls Toward Smart Heat Storage
,”
J. Phys. Chem. C
,
115
(
41
), pp.
20061
20066
.
29.
Salaun
,
F.
,
Devaux
,
E.
,
Bourbigot
,
S.
, and
Rumeau
,
P.
,
2008
, “
Development of a Precipitation Method Intended for the Entrapment of Hydrated Salt
,”
Carbohydr. Polym.
,
73
(
2
), pp.
231
240
.
30.
Hongois
,
S.
,
Kuznik
,
F.
,
Stevens
,
P.
, and
Roux
,
J.-J.
,
2011
, “
Development and Characterisation of a New MgSO4−Zeolite Composite for Long-Term Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
95
(
7
), pp.
1831
1837
.
31.
Cao
,
L.
,
Tang
,
F.
, and
Fang
,
G. Y.
,
2014
, “
Synthesis and Characterization of Microencapsulated Paraffin With Titanium Dioxide Shell as Shape-Stabilized Thermal Energy Storage Materials in Buildings
,”
Energy Build.
,
72
, pp.
31
37
.
You do not currently have access to this content.