The solid–liquid phase change process is of importance in the usage of phase change material (PCM). In this paper, the phase change lattice Boltzmann (LB) model has been used to investigate the solid–liquid phase change in an inclined cavity. Three heat flux distributions applied to the left wall are investigated: uniform distribution, linear distribution, and parabolic symmetry distribution. The results show that for all the heat flux distributions, the slight clockwise rotation of the cavity can accelerate the melting process. Furthermore, when more heat is transferred to the cavity through the middle part (parabolic symmetry distribution) or bottom part (linear distribution) of left wall, clockwise rotation of cavity leads to larger temperature of PCM.

References

References
1.
Liu
,
C.
,
Rao
,
Z.
,
Zhao
,
J.
,
Huo
,
Y.
, and
Li
,
Y.
,
2015
, “
Review on Nanoencapsulated Phase Change Materials: Preparation, Characterization and Heat Transfer Enhancement
,”
Nano Energy
,
13
, pp.
814
826
.
2.
Borderon
,
J.
,
Virgone
,
J.
, and
Cantin
,
R.
,
2015
, “
Modeling and Simulation of a Phase Change Material System for Improving Summer Comfort in Domestic Residence
,”
Appl. Energy
,
140
, pp.
288
296
.
3.
Fauzi
,
H.
,
Metselaar
,
H. S. C.
,
Mahlia
,
T. M. I.
,
Silakhori
,
M.
, and
Ong
,
H. C.
,
2015
, “
Thermal Characteristic Reliability of Fatty Acid Binary Mixtures as Phase Change Materials (PCMs) for Thermal Energy Storage Applications
,”
Appl. Therm. Eng.
,
80
, pp.
127
131
.
4.
Jmal
,
I.
, and
Baccar
,
M.
,
2015
, “
Numerical Study of PCM Solidification in a Finned Tube Thermal Storage Including Natural Convection
,”
Appl. Therm. Eng.
,
84
, pp.
320
330
.
5.
Rao
,
Z.
,
Wang
,
S.
, and
Zhang
,
G.
,
2011
, “
Simulation and Experiment of Thermal Energy Management With Phase Change Material for Ageing LiFePO4 Power Battery
,”
Energy Convers. Manage.
,
52
(
12
), pp.
3408
3414
.
6.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4554
4571
.
7.
Rao
,
Z.
,
Huo
,
Y.
,
Liu
,
X.
, and
Zhang
,
G.
,
2015
, “
Experimental Investigation of Battery Thermal Management System for Electric Vehicle Based on Paraffin/Copper Foam
,”
J. Energy Inst.
,
88
(
3
), pp.
241
246
.
8.
Rao
,
Z.
,
Wang
,
S.
, and
Peng
,
F.
,
2013
, “
Molecular Dynamics Simulations of Nano-Encapsulated and Nanoparticle-Enhanced Thermal Energy Storage Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
66
, pp.
575
584
.
9.
Jiaung
,
W.-S.
,
Ho
,
J.-R.
, and
Kuo
,
C.-P.
,
2001
, “
Lattice Boltzmann Method for the Heat Conduction Problem With Phase Change
,”
Numer. Heat Transfer, Part B
,
39
(
2
), pp.
167
187
.
10.
Yang
,
J.
,
Yang
,
L.
,
Xu
,
C.
, and
Du
,
X.
,
2015
, “
Numerical Analysis on Thermal Behavior of Solid–Liquid Phase Change Within Copper Foam With Varying Porosity
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1008
1018
.
11.
Zheng
,
L.
,
Zheng
,
S.
, and
Zhai
,
Q.
,
2015
, “
Lattice Boltzmann Equation Method for the Cahn-Hilliard Equation
,”
Phys. Rev. E
,
91
(
1
), p. 013309.
12.
Li
,
Q.
,
Luo
,
K. H.
,
Kang
,
Q. J.
, and
Chen
,
Q.
,
2014
, “
Contact Angles in the Pseudopotential Lattice Boltzmann Modeling of Wetting
,”
Phys. Rev. E
,
90
(
5
), p. 053301.
13.
Miller
,
W.
,
2001
, “
The Lattice Boltzmann Method: A New Tool for Numerical Simulation of the Interaction of Growth Kinetics and Melt Flow
,”
J. Cryst. Growth
,
230
(
1–2
), pp.
263
269
.
14.
Huang
,
R.
,
Wu
,
H.
, and
Cheng
,
P.
,
2013
, “
A New Lattice Boltzmann Model for Solid–Liquid Phase Change
,”
Int. J. Heat Mass Transfer
,
59
, pp.
295
301
.
15.
Huo
,
Y.
, and
Rao
,
Z.
,
2017
, “
The Quasi-Enthalpy Based Lattice Boltzmann Model for Solid-Liquid Phase Change
,”
Appl. Therm. Eng.
,
115
, pp.
1237
1244
.
16.
Huang
,
R.
, and
Wu
,
H.
,
2014
, “
An Immersed Boundary-Thermal Lattice Boltzmann Method for Solid–Liquid Phase Change
,”
J. Comput. Phys.
,
277
, pp.
305
319
.
17.
De Fabritiis
,
G.
,
Mancini
,
A.
,
Mansutti
,
D.
, and
Succi
,
S.
,
1998
, “
Mesoscopic Models of Liquid/Solid Phase Transitions
,”
Int. J. Mod. Phys. C
,
9
(
8
), pp.
1405
1415
.
18.
Huber
,
C.
,
Parmigiani
,
A.
,
Chopard
,
B.
,
Manga
,
M.
, and
Bachmann
,
O.
,
2008
, “
Lattice Boltzmann Model for Melting With Natural Convection
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1469
1480
.
19.
Gao
,
D.
, and
Chen
,
Z.
,
2011
, “
Lattice Boltzmann Simulation of Natural Convection Dominated Melting in a Rectangular Cavity Filled With Porous Media
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
493
501
.
20.
Chen
,
Z.
,
Gao
,
D.
, and
Shi
,
J.
,
2014
, “
Experimental and Numerical Study on Melting of Phase Change Materials in Metal Foams at Pore Scale
,”
Int. J. Heat Mass Transfer
,
72
, pp.
646
655
.
21.
Chatterjee
,
D.
, and
Chakraborty
,
S.
,
2005
, “
An Enthalpy-Based Lattice Boltzmann Model for Diffusion Dominated Solid–Liquid Phase Transformation
,”
Phys. Lett. A
,
341
(
1–4
), pp.
320
330
.
22.
Eshraghi
,
M.
, and
Felicelli
,
S. D.
,
2012
, “
An Implicit Lattice Boltzmann Model for Heat Conduction With Phase Change
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2420
2428
.
23.
Chatterjee
,
D.
, and
Chakraborty
,
S.
,
2006
, “
A Hybrid Lattice Boltzmann Model for Solid–Liquid Phase Transition in Presence of Fluid Flow
,”
Phys. Lett. A
,
351
(
4–5
), pp.
359
367
.
24.
Feng
,
Y.
,
Li
,
H.
,
Li
,
L.
,
Bu
,
L.
, and
Wang
,
T.
,
2015
, “
Numerical Investigation on the Melting of Nanoparticle-Enhanced Phase Change Materials (NEPCM) in a Bottom-Heated Rectangular Cavity Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
81
, pp.
415
425
.
25.
Huang
,
R.
, and
Wu
,
H.
,
2015
, “
Phase Interface Effects in the Total Enthalpy-Based Lattice Boltzmann Model for Solid–Liquid Phase Change
,”
J. Comput. Phys.
,
294
, pp.
346
362
.
26.
Luo
,
K.
,
Yao
,
F.-J.
,
Yi
,
H.-L.
, and
Tan
,
H.-P.
,
2015
, “
Lattice Boltzmann Simulation of Convection Melting in Complex Heat Storage Systems Filled With Phase Change Materials
,”
Appl. Therm. Eng.
,
86
, pp.
238
250
.
27.
Huo
,
Y.
, and
Rao
,
Z.
,
2015
, “
Lattice Boltzmann Simulation for Solid–Liquid Phase Change Phenomenon of Phase Change Material Under Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
86
, pp.
197
206
.
28.
Huo
,
Y.
, and
Rao
,
Z.
,
2017
, “
Investigation of Phase Change Material Based Battery Thermal Management at Cold Temperature Using Lattice Boltzmann Method
,”
Energy Convers. Manage.
,
133
, pp.
204
215
.
29.
Kamkari
,
B.
,
Shokouhmand
,
H.
, and
Bruno
,
F.
,
2014
, “
Experimental Investigation of the Effect of Inclination Angle on Convection-Driven Melting of Phase Change Material in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
,
72
, pp.
186
200
.
30.
Jourabian
,
M.
,
Farhadi
,
M.
, and
Darzi
,
A. A. R.
,
2012
, “
Simulation of Natural Convection Melting in an Inclined Cavity Using Lattice Boltzmann Method
,”
Sci. Iran.
,
19
(
4
), pp.
1066
1073
.
31.
Ren
,
Q.
, and
Chan
,
C. L.
,
2016
, “
GPU Accelerated Numerical Study of PCM Melting Process in an Enclosure With Internal Fins Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
100
, pp.
522
535
.
32.
Brent
,
A.
,
Voller
,
V.
, and
Reid
,
K. T. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer, Part A
,
13
(
3
), pp.
297
318
.
33.
Mohamad
,
A. A.
, and
Kuzmin
,
A.
,
2010
, “
A Critical Evaluation of Force Term in Lattice Boltzmann Method, Natural Convection Problem
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
990
996
.
34.
Karani
,
H.
, and
Huber
,
C.
,
2015
, “
Lattice Boltzmann Formulation for Conjugate Heat Transfer in Heterogeneous Media
,”
Phys. Rev. E
,
91
(
2
), p. 023304.
35.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2002
, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E
,
65
(
4
), p.
046308
.
36.
Guo
,
Z.
,
Shi
,
B.
, and
Wang
,
N.
,
2000
, “
Lattice BGK Model for Incompressible Navier–Stokes Equation
,”
J. Comput. Phys.
,
165
(
1
), pp.
288
306
.
37.
Noble
,
D.
, and
Torczynski
,
J.
,
1998
, “
A Lattice-Boltzmann Method for Partially Saturated Computational Cells
,”
Int. J. Mod. Phys. C
,
9
(
8
), pp.
1189
1201
.
38.
Holdych
,
D. J.
,
2003
, “
Lattice Boltzmann Methods for Diffuse and Mobile Interfaces
,”
Ph.D. thesis
, University of Illinois at Urbana-Champaign, Champaign, IL.http://adsabs.harvard.edu/abs/2003PhDT........65H
39.
Strack
,
O. E.
, and
Cook
,
B. K.
,
2007
, “
Three-Dimensional Immersed Boundary Conditions for Moving Solids in the Lattice-Boltzmann Method
,”
Int. J. Numer. Methods Fluids
,
55
(
2
), pp.
103
125
.
You do not currently have access to this content.