In this paper, a new hybrid numerical algorithm is developed to solve coupled convection–radiation heat transfer in a two-dimensional cavity containing an absorbing, emitting, and scattering medium. The radiative information is obtained by solving the radiative transfer equation (RTE) using the control volume finite element method (CVFEM), and the density, velocity, and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). To the knowledge of the authors, this hybrid numerical method is applied at the first time to simulate combined transient convective radiative heat transfer in 2D participating media. In order to test the efficiency of the developed method, two configurations are examined: (i) free convection with radiation in a square cavity bounded by two horizontal insulating sides and two vertical isothermal walls and (ii) Rayleigh–Benard convection with and without radiative heat transfer. The obtained results are validated against available works in literature, and the proposed method is found to be efficient, accurate, and numerically stable.

References

References
1.
Dixit
,
H. N.
, and
Babu
,
V.
,
2006
, “
Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
49
, pp.
727
739
.
2.
Kuznik
,
F.
,
Vereilles
,
J.
,
Rusaouen
,
G.
, and
Krauss
,
G.
,
2007
, “
A Double-Population Lattice Boltzmann Method With Non-Uniform Mesh for the Simulation of Natural Convection in a Square Cavity
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
862
870
.
3.
Seta
,
T.
,
Takegoshi
,
E.
, and
Okui
,
K.
,
2006
, “
Lattice Boltzmann Simulation of Natural Convection in Porous Media
,”
Math. Comput. Simul.
,
72
, pp.
195
200
.
4.
Kuznik
,
F.
, and
Rusaouen
,
G.
,
2007
, “
Numerical Prediction of Natural Convection Occurring in Building Components: A Double-Population Lattice Boltzmann Method
,”
Numer. Heat Transfer A
,
52
(
4
), pp.
315
335
.
5.
Nansteel
,
M. W.
, and
Greif
,
R.
,
1984
, “
An Investigation of Natural Convection in Enclosures With Two- and Three-Dimensional Partitions
,”
Int. J. Heat Mass Transfer
,
27
(
4
), pp.
561
571
.
6.
Chang
,
L. C.
,
Lloyd
,
J. R.
, and
Yang
,
K. T.
,
1982
, “
A Finite Difference Study of Natural Convection in Complex Enclosures
,”
7th International Heat Transfer Conference
, Munich, Germany, Sept. 6–10, Vol.
2
, pp.
183
188
.
7.
Jami
,
M.
,
Mezrhab
,
A.
,
Bouzidi
,
M.
, and
Lallemand
,
P.
,
2007
, “
Lattice Boltzmann Method Applied to the Laminar Natural Convection in an Enclosure With a Heat-Generating Cylinder Conducting Body
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
38
47
.
8.
Bajorek
,
S. M.
, and
Lloyd
,
J. R.
,
1982
, “
Experimental Investigation of Natural Convection in Partitioned Enclosures
,”
ASME J. Heat Transfer
,
104
(
3
), pp.
527
532
.
9.
Bilski
,
S. M.
,
Lloyd
,
J. R.
, and
Yang
,
K. T.
,
1986
, “
An Experimental Investigation of the Laminar Natural Convection Velocity Field in Square and Partitioned Enclosures
,”
8th International Heat Transfer Conference
, San Francisco, CA, Aug. 17–22, Vol.
4
, pp.
1513
1518
.
10.
Fu
,
W.-S.
,
Perng
,
J. C.
, and
Shieh
,
W.-J.
,
1989
, “
Transient Laminar Natural Convection in an Enclosure Partitioned by an Adiabatic Baffle
,”
Numer. Heat Transfer
,
16
(
3
), pp.
325
350
.
11.
Scott
,
D.
,
Anderson
,
R.
, and
Figliola
,
R.
,
1988
, “
Blockage of Natural Convection Boundary Layer Flow in a Multizone Enclosure
,”
Int. J. Heat Fluid
,
9
(
2
), pp.
208
215
.
12.
Xu
,
K.
, and
Lui
,
S. H.
,
1999
, “
Rayleigh-Benard Simulation Using the Gas-Kinetic Bhatnagar-Gross-Krook Scheme in the Incompressible Limit
,”
Phys. Rev. E
,
60
(
1
), pp.
464
470
.
13.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput.
,
146
(
1
), pp.
282
300
.
14.
Kao
,
P. H.
, and
Yang
,
R. J.
,
2007
, “
Simulating Oscillatory Flows in Rayleigh–Benard Convection Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3315
3328
.
15.
Hinojosa
,
J. F.
,
Estrada
,
C. A.
,
Cabanilles
,
R. E.
, and
Alvarez
,
G.
,
2005
, “
Numerical Study of Transient and Steady-State Natural Convection and Surface Radiation in Horizontal Square Open Cavity
,”
Numer. Heat Transfer A
,
48
(
2
), pp.
179
196
.
16.
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
1995
, “
Combined Conduction, Convection and Radiation in a Slot
,”
Int. J. Heat Fluid Flow
,
16
(
2
), pp.
139
144
.
17.
Hossain
,
M. A.
,
Khanafer
,
K.
, and
Vafai
,
K.
,
2001
, “
The Effect of Radiation on Free Convection Flow of Fluid With Variable Viscosity From a Porous Vertical Plate
,”
Int. J. Therm. Sci.
,
40
(
2
), pp.
115
124
.
18.
Yucel
,
A.
,
Acharya
,
S.
, and
Williams
,
S.
,
1989
, “
Natural Convection and Radiation in a Square Enclosure
,”
Numer. Heat Transfer A
,
15
(
2
), pp.
261
277
.
19.
Sediki
,
E.
,
Soufiani
,
A.
, and
Sifaoui
,
M. S.
,
2003
, “
Combined Gas Radiation and Laminar Mixed Convection in Vertical Circular Tubes
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
736
746
.
20.
El Ayachi
,
R.
,
Raji
,
A.
,
Hasnaoui
,
M.
, and
Bahlaoui
,
A.
,
2008
, “
Combined Effect of Radiation and Natural Convection in a Square Cavity Differentially Heated With a Periodic Temperature
,”
Numer. Heat Transfer A
,
53
(
12
), pp.
1339
1356
.
21.
Ridouane
,
E. H.
,
Hasnoui
,
M.
,
Amahmid
,
A.
, and
Raji
,
A.
,
2004
, “
Interaction Between Natural Convection and Radiation in a Square Cavity Heated From Below
,”
Numer. Heat Transfer A
,
45
(
3
), pp.
289
311
.
22.
Sharma
,
A. K.
,
Velusamy
,
K.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2007
, “
Conjugate Turbulent Natural Convection With Surface Radiation in Air Filled Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
625
639
.
23.
Singh
,
S. N.
, and
Venkateshan
,
S. P.
,
2004
, “
Numerical Study of Natural Convection With Surface Radiation in Side-Vented Open Cavities
,”
Int. J. Therm. Sci.
,
43
(
9
), pp.
865
876
.
24.
Jaballah
,
S.
,
Sammouda
,
H.
, and
Belghith
,
A.
,
2007
, “
Effect of Surface Radiation on the Natural-Convection Stability in a Two-Dimensional Enclosure With Diffusely Emitting Boundary Walls
,”
Numer. Heat Transfer A
,
51
(
5
), pp.
495
516
.
25.
Bahlaoui
,
A.
,
Raji
,
A.
,
El Ayachi
,
R.
,
Hasnaoui
,
M.
,
Lamsaadi
,
M.
, and
Nami
,
M.
,
2007
, “
Coupled Natural Convection and Radiation in a Horizontal Rectangular Enclosure Discretely Heated From Below
,”
Numer. Heat Transfer A
,
52
(
11
), pp.
1027
1042
.
26.
Mezrhab
,
A.
,
Bouali
,
H.
,
Amaoui
,
H.
, and
Bouzidi
,
M.
,
2006
, “
Computation of Combined Natural-Convection and Radiation Heat-Transfer in a Cavity Having a Square Body at Its Center
,”
Appl. Energy
,
83
(
9
), pp.
1004
1023
.
27.
Mondal
,
B.
, and
Mishra
,
S. C.
,
2009
, “
Simulation of Natural Convection in the Presence of Volumetric Radiation Using the Lattice Boltzmann Method
,”
Numer. Heat Transfer A
,
55
(
1
), pp.
18
41
.
28.
Mondal
,
B.
, and
Li
,
X.
,
2010
, “
Effect of Volumetric Radiation on Natural Convection in a Square Cavity Using Lattice Boltzmann Method With Non Uniform Lattices
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4935
4948
.
29.
Banda
,
M. K.
,
Klar
,
A.
, and
Seaid
,
M.
,
2007
, “
A Lattice-Boltzmann Relaxation Scheme for Coupled Convection–Radiation Systems
,”
J. Comput. Phys.
,
226
(
2
), pp.
1408
1431
.
30.
Tan
,
Z.
, and
Howell
,
J. R.
,
1991
, “
Combined Radiation and Natural Convection in a Two-Dimensional Participating Square Medium
,”
Int. J. Heat Mass Transfer
,
34
(
3
), pp.
785
793
.
31.
D’Orazio
,
A.
,
Corcione
,
M.
, and
Piero Celata
,
G.
,
2004
, “
Application to Natural Convection Enclosed Flows of a Lattice Boltzmann BGK Model Coupled With a General Purpose Thermal Boundary Condition
,”
Int. J. Therm. Sci.
,
43
(
6
), pp.
575
586
.
32.
Succi
,
S.
,
2001
,
Lattice Boltzmann Method for Fluid Dynamics and Beyond
,
Oxford University Press
, New York.
33.
Benzi
,
R.
,
Succi
,
S.
, and
Vergassola
,
M.
,
1992
, “
The Lattice Boltzmann Equation: Theory and Applications
,”
Phys. Rep.
,
222
(
3
), pp.
145
197
.
34.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
35.
Chaabane
,
R.
,
Askri
,
F.
, and
Nasrallah
,
S. B.
,
2010
, “
Numerical Modelling of Boundary Conditions for Two Dimensional Conduction Heat Transfer Equation Using Lattice Boltzmann Method
,”
Int. J. Heat Technol.
,
28
(
2
), pp. 53–60.
36.
He
,
X.
, and
Luo
,
L.-S.
,
1997
, “
Lattice Boltzmann Model for the Incompressible Navier–Stokes Equations
,”
J. Stat. Phys.
,
88
(
3
), pp.
927
944
.
37.
Qian
,
Y. H.
,
d’Humieres
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier–Stokes Equation
,”
Europhys. Lett.
,
17
(
6
), pp.
479
484
.
38.
Mohamad
,
A. A.
,
2007
,
Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer
, Sure Print, Calgary, AB, Canada.
39.
Chaabane
,
R.
,
Askri
,
F.
, and
Nasrallah
,
S. B.
,
2011
, “
Parametric Study of Simultaneous Transient Conduction and Radiation in a Two-Dimensional Participating Medium
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
10
), pp.
4006
4020
.
40.
Kunnen
,
R. P. J.
,
Stevens
,
R. J. A. M.
,
Overkamp
,
J.
,
Sun
,
C.
,
van Heijst
,
G. F.
, and
Clercx
,
H. J. H.
,
2011
, “
The Role of Stewartson and Ekman Layers in Turbulent Rotating Rayleigh-Benard Convection
,”
J. Fluid Mech.
,
688
, pp. 422–442.
41.
Chaabane
,
R.
,
Askri
,
F.
, and
Nasrallah
,
S. B.
,
2011
, “
A New Hybrid Algorithm for Solving Transient Combined Conduction Radiation Heat Transfer Problems
,”
J. Therm. Sci.
,
15
(
3
), pp.
649
662
.
42.
Grissa
,
H.
, Askri, F., Salah, M. B., and Nasrallah, S. B.,
2010
, “
Prediction of Radiative Heat Transfer in 3D Complex Geometries Using the Unstructured Control Volume Finite Element Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
2
, pp.
144
154
.
43.
Chaabane
,
R.
,
Askri
,
F.
, and
Nasrallah
,
S. B.
,
2011
, “
Analysis of Two-Dimensional Transient Conduction-Radiation Problems in an Anisotropically Scattering Participating Enclosure Using the Lattice Boltzmann Method and the Control Volume Finite Element Method
,”
J. Comput. Phys. Commun.
,
182
(
7
), pp.
1402
1413
.
44.
Chaabane
,
R.
,
Askri
,
F.
, and
Nasrallah
,
S. B.
,
2011
, “
Application of the Lattice Boltzmann Method to Transient Conduction and Radiation Heat Transfer in Cylindrical Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
12
), pp.
2013
2027
.
45.
Luo
,
K.
,
Ai
,
Q.
,
Yi
,
H.-L.
, and
Tan
,
H.-P.
,
2015
, “
Coupled Lattice Boltzmann and Meshless Simulation of Natural Convection in the Presence of Volumetric Radiation
,”
ASME J. Heat Transfer
,
137
(
11
), p.
111504
.
46.
Luo
,
K.
,
Yi
,
H.-L.
, and
Tan
,
H.-P.
,
2014
, “
Coupled Radiation and Mixed Convection in an Eccentric Annulus Using the Hybrid Strategy of Lattice Boltzmann-Meshless Method
,”
Numer. Heat Transfer, Part B
,
66
(
3
), pp.
243
267
.
47.
De Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.
48.
Barakos
,
G.
,
Mitsoulis
,
E.
, and
Assimacopoulos
,
D.
,
1994
, “
Natural Convection Flow in a Square Cavity Revisited: Laminar and Turbulent Models With Wall Functions
,”
Int. J. Numer. Methods Fluids
,
18
(
7
), pp.
695
719
.
You do not currently have access to this content.