In this paper, a numerical model employing an approximately realistic three-dimensional (3D) foam structure represented by Weaire–Phelan foam cell is developed to study the steady-state heat conduction of high porosity open-cell metal foam/paraffin composite at the pore-scale level. The conduction problem is considered in a cubic representative computation unit of the composite material with a constant temperature difference between one opposite sides of the cubic unit (the other outer surfaces of the cubic unit are thermally insulated). The effective thermal conductivities (ETCs) of metal foam/paraffin composites are calculated with the developed pore-scale model considering small-scale details of heat conduction, which avoids using adjustable free parameters that are usually adopted in the previous analytical models. Then, the reason why the foam pore size has no evident effect on ETC as reported in the previous macroscopic experimental studies is explored at pore scale. Finally, the effect of air cavities existing within solid paraffin in foam pore region on conduction capacity of metal foam/paraffin composite is investigated. It is found that our ETC data agree well with the reported experimental results, and thus by direct numerical simulation (DNS), the ETC data of different metal foam/paraffin composites are provided for engineering applications. The essential reason why pore size has no evident effect on ETC is due to the negligible interstitial heat transfer between metal foam and paraffin under the present thermal boundary conditions usually used to determine the ETC. It also shows that overlarge volume fraction of air cavity significantly weakens the conduction capacity of paraffin, which however can be overcome by the adoption of high conductive metal foam due to enhancement of conduction.

References

References
1.
Liu
,
Z.
,
Yao
,
Y.
, and
Wu
,
H.
,
2013
, “
Numerical Modeling for Solid–Liquid Phase Change Phenomena in Porous Media: Shell-and-Tube Type Latent Heat Thermal Energy Storage
,”
Appl. Energy
,
112
, pp.
1222
1232
.
2.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2014
, “
Computational Studies on Metal Foam and Heat Pipe Enhanced Latent Thermal Energy Storage
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051503
.
3.
Allen
,
M. J.
,
Bergman
,
T. L.
,
Faghri
,
A.
, and
Sharifi
,
N.
,
2015
, “
Robust Heat Transfer Enhancement During Melting and Solidification of a Phase Change Material Using a Combined Heat Pipe-Metal Foam or Foil Configuration
,”
ASME J. Heat Transfer
,
137
(
10
), p.
102301
.
4.
Mancin
,
S.
,
Diani
,
A.
,
Doretti
,
L.
,
Hooman
,
K.
, and
Rossetto
,
L.
,
2015
, “
Experimental Analysis of Phase Change Phenomenon of Paraffin Waxes Embedded in Copper Foams
,”
Int. J. Therm. Sci.
,
90
, pp.
79
89
.
5.
Xiao
,
X.
,
Zhang
,
P.
, and
Li
,
M.
,
2013
, “
Preparation and Thermal Characterization of Paraffin/Metal Foam Composite Phase Change Material
,”
Appl. Energy
,
112
, pp.
1357
1366
.
6.
Chen
,
J.
,
Yang
,
D.
,
Jiang
,
J.
,
Ma
,
A.
, and
Song
,
D.
,
2014
, “
Research Progress of Phase Change Materials (PCMs) Embedded With Metal Foam (A Review)
,”
Procedia Mater. Sci.
,
4
, pp.
389
394
.
7.
Shiina
,
Y.
,
2006
, “
Reduction of Temperature Changes in Heat Transfer Fluid by the Use of Latent Heat Storage Technology
,”
Trans. At. Energy Soc. Jpn.
,
5
(
3
), pp.
190
199
.
8.
Hong
,
S. T.
, and
Herling
,
D. R.
,
2007
, “
Effects of Surface Area Density of Aluminum Foams on Thermal Conductivity of Aluminum Foam‐Phase Change Material Composites
,”
Adv. Eng. Mater.
,
9
(
7
), pp.
554
557
.
9.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Shaikh
,
S.
,
2007
, “
Experimental Study on the Influence of Foam Porosity and Pore Size on the Melting of Phase Change Materials
,”
J. Appl. Phys.
,
102
(
8
), p.
083549
.
10.
Xiao
,
X.
,
Zhang
,
P.
, and
Li
,
M.
,
2014
, “
Effective Thermal Conductivity of Open-Cell Metal Foams Impregnated With Pure Paraffin for Latent Heat Storage
,”
Int. J. Therm. Sci.
,
81
, pp.
94
105
.
11.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2015
, “
A New Prediction Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
97
, pp.
56
67
.
12.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.
13.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
14.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2011
, “
Corrigendum for the Paper: K. Boomsma, D. Poulikakos, On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam [International Journal of Heat and Mass Transfer, 44 (2001) 827–836]
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
746
748
.
15.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
793
799
.
16.
Goodall
,
R.
,
Weber
,
L.
, and
Mortensen
,
A.
,
2006
, “
The Electrical Conductivity of Microcellular Metals
,”
J. Appl. Phys.
,
100
(
4
), p.
044912
.
17.
Assis
,
E.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2009
, “
Numerical and Experimental Study of Solidification in a Spherical Shell
,”
ASME J. Heat Transfer
,
131
(
2
), p.
024502
.
18.
Sundarram
,
S. S.
, and
Li
,
W.
,
2014
, “
The Effect of Pore Size and Porosity on Thermal Management Performance of Phase Change Material Infiltrated Microcellular Metal Foams
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
147
154
.
19.
Hu
,
X.
,
Wan
,
H.
, and
Patnaik
,
S. S.
,
2015
, “
Numerical Modeling of Heat Transfer in Open-Cell Micro-Foam With Phase Change Material
,”
Int. J. Heat Mass Transfer
,
88
, pp.
617
626
.
20.
Phelan
,
R.
,
Weaire
,
D.
, and
Brakke
,
K.
,
1995
, “
Computation of Equilibrium Foam Structures Using the Surface Evolver
,”
Exp. Math.
,
4
(
3
), pp.
181
192
.
21.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S.
,
2013
, “
Convection Heat Transfer From Aluminium and Copper Foams in a Vertical Channel—An Experimental Study
,”
Int. J. Therm. Sci.
,
64
, pp.
1
10
.
22.
Banhart
,
J.
,
2006
, “
Metal Foams: Production and Stability
,”
Adv. Eng. Mater.
,
8
(
9
), pp.
781
794
.
23.
Bock
,
J.
, and
Jacobi
,
A. M.
,
2013
, “
Geometric Classification of Open-Cell Metal Foams Using X-Ray Micro-Computed Tomography
,”
Mater. Charact.
,
75
, pp.
35
43
.
24.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
,
2003
, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
,
24
(
6
), pp.
825
834
.
25.
Kopanidis
,
A.
,
Theodorakakos
,
A.
,
Gavaises
,
E.
, and
Bouris
,
D.
,
2010
, “
3D Numerical Simulation of Flow and Conjugate Heat Transfer Through a Pore Scale Model of High Porosity Open Cell Metal Foam
,”
Int. J. Heat Mass Transfer
,
53
(
11
), pp.
2539
2550
.
26.
de Carvalho
,
T. P.
,
Morvan
,
H. P.
, and
Hargreaves
,
D.
,
2014
, “
Pore-Level Numerical Simulation of Open-Cell Metal Foams With Application to Aero Engine Separators
,”
ASME
Paper No. GT2014-26402.
27.
Calmidi
,
V.
, and
Mahajan
,
R.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
28.
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, New York.
29.
Pettes
,
M. T.
,
Sadeghi
,
M. M.
,
Ji
,
H.
,
Jo
,
I.
,
Wu
,
W.
,
Ruoff
,
R. S.
, and
Shi
,
L.
,
2015
, “
Scattering of Phonons by High-Concentration Isotopic Impurities in Ultrathin Graphite
,”
Phys. Rev. B
,
91
(
3
), p. 035429
30.
Hosseinizadeh
,
S. F.
,
Darzi
,
A. A. R.
, and
Tan
,
F. L.
,
2012
, “
Numerical Investigations of Unconstrained Melting of Nano-Enhanced Phase Change Material (NEPCM) Inside a Spherical Container
,”
Int. J. Therm. Sci.
,
51
, pp.
77
83
.
31.
Mózes
,
G.
, ed.,
1983
,
Paraffin Products
, Vol.
14
,
Elsevier
,
New York
.
32.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2011
, “
A Numerical Investigation of Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Metals
,”
Energy
,
36
(
9
), pp.
5539
5546
.
You do not currently have access to this content.