Enhancing of boiling heat transfer by combining the electrohydrodynamic (EHD) effect and surface wettability has been shown to remove the high heat fluxes from electrical devices such as laser diodes, light emitting diodes, and central processing units. However, this phenomenon is not well understood. Our previous studies on the critical heat flux (CHF) of pool boiling have shown that CHF greatly increases with the application of an electric field and that the wall temperature can be decreased to a level with the safe operation of the electrical devices by using a low contact angle with the boiling surface. To verify the earlier prediction model, CHF enhancement by changing the contact angle with the boiling surface and by the application of an electric field was investigated. A fluorinated dielectric liquid (Asahi Glass Co. Ltd, Tokyo, Japan, AE-3000) was selected as the working fluid. To allow the contact angle between the boiling surface and the dielectric liquid to be changed, several different materials (Cu, Cr, NiB, Sn) and a surface coated with a mixture of 1.5 and 5 μm diamond particles were used as boiling surfaces. The CHFs at different contact angles were 20.5–26.9 W/cm2, corresponding to 95–125% of that for a polished Cu surface (21.5 W/cm2). Upon application of a −5 kV/mm electric field to the microstructured surface (the mixture of 1.5 μm and 5 μm diamond particles), a CHF of 99 W/cm2 at a superheat of 33.5 K was obtained. Based on this experimental evidence, we normalized the CHF and contact angle using our previously developed hydrodynamic instability model and semi-empirical model derived from the interfacial area density close to the boiling surface. This procedure allowed us to develop a general model that predicted CHF well, including the CHF for the de-ionized (DI) water.

References

References
1.
BAR-Chohen
,
A.
,
Arik
,
M.
, and
Ohadi
,
M.
,
2006
, “
Direct Liquid Cooling of High Flux Micro and Nano Electric Components
,”
Proc. IEEE
,
94
(
8
), pp.
1549
1570
.
2.
Lloveras
,
P.
,
Salvat-Pujol
,
F.
,
Truskinovsky
,
L.
, and
Vives
,
E.
,
2012
, “
Boiling Crisis as a Critical Phenomenon
,”
Phys. Rev. Lett.
,
108
(
21
), p.
215701
.
3.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
659
669
.
4.
O'Connor
,
J. P.
,
You
,
S. M.
, and
Price
,
D. C.
,
1995
, “
A Dielectric Surface Coating Technique to Enhance Boiling Heat Transfer From High Power Microelectronics
,”
IEEE Trans. Compon. Packag. Manuf. Technol., Part A
,
18
(
3
), pp.
656
663
.
5.
Das
,
A. K.
,
Das
,
P. K.
, and
Saha
,
P.
,
2007
, “
Nucleate Boiling of Water From Plain and Structures Surfaces
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
967
977
.
6.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121009
.
7.
Furberg
,
R.
, and
Palm
,
B.
,
2011
, “
Boiling Heat Transfer on a Dendritic and Micro-Porous Surface in R134a and FC-72
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3595
3603
.
8.
Dhillon
,
N. S.
,
Buongiorno
,
J.
, and
Varanasi
,
K. K.
,
2015
, “
Critical Heat Flux Maxima During Boiling Crisis on Textured Surface
,”
Nat. Commun.
,
6
, pp.
1
12
.
9.
Jones
,
T. B.
,
1978
, “
Electrohydrodynamically Enhanced Heat Transfer in Liquids: A Review
,”
Adv. Heat Transfer
,
14
, pp.
107
148
.
10.
Allen
,
P. H. G.
, and
Karayiannis
,
T. G.
,
1994
, “
Electrohydrodynamic Enhancement of Heat Transfer and Fluid Flow
,”
Heat Recovery Syst. CHP
,
15
(
5
), pp.
389
423
.
11.
Laohalertdecha
,
S.
,
Naphon
,
P.
, and
Wongwises
,
S.
,
2007
, “
A Review of Electrohydrodynamic Enhancement of Heat Transfer
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
858
876
.
12.
Hristov
,
Y.
,
Zhao
,
D.
,
Kenning
,
D. B. R.
,
Sefiane
,
K.
, and
Karayiannis
,
T. G.
,
2009
, “
A Study of Nucleate Boiling and Critical Heat Flux With EHD Enhancement
,”
Heat Mass Transfer
,
45
(
7
), pp.
999
1017
.
13.
Zagdoudi
,
M. C.
, and
Lallemand
,
M.
,
2001
, “
Nucleate Pool Boiling Under the DC Electric Field
,”
Exp. Heat Transfer
,
14
(
3
), pp.
157
180
.
14.
Kano
,
I.
, and
Takahashi
,
Y.
,
2013
, “
Effects of Electric Field Generated by Microsized Electrode on Pool Boiling
,”
IEEE Trans. Ind. Appl.
,
49
(
6
), pp.
2382
2387
.
15.
Pearson
,
M. R.
, and
Seyed-Yagoobi
,
J.
,
2013
, “
EHD Conduction-Driven Enhancement of Critical Heat Flux in Pool Boiling
,”
IEEE Trans. Ind. Appl.
,
49
(
4
), pp.
1808
1916
.
16.
Landau
,
L. D.
,
Lifshitz
,
E. M.
, and
Pitaevskii
,
L. P.
,
1984
,
Electrohydrodynamics of Continuous Media
,
2nd ed.
, Vol.
8
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
59
64
.
17.
Panofsky
,
W. K. H.
,
1962
,
Classical Electricity and Magnetism
,
2nd ed.
,
Dover
,
Mineola, NY
, pp.
111
116
.
18.
Stuetzer
,
O. M.
,
1959
, “
Ion Drag Pressure Generation
,”
J. Appl. Phys.
,
30
(
7
), pp.
984
994
.
19.
Pickard
,
W. F.
,
1963
, “
Ion-Drag Pumping—I: Theory
,”
J. Appl. Phys.
,
34
(
2
), pp.
246
250
.
20.
Pickard
,
W. F.
,
1963
, “
Ion-Drag Pumping—II: Experiment
,”
J. Appl. Phys.
,
34
(
2
), pp.
251
258
.
21.
Kano
,
I.
,
Higuchi
,
Y.
, and
Chika
,
T.
,
2013
, “
Development of Boiling Type Cooling System Using Electrostatics Effect
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091301
.
22.
Kano
,
I.
,
2014
, “
Effect of Electric Field Distribution Generated in a Microspace on Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
136
(
10
), p.
101501
.
23.
Kano
,
I.
,
2014
, “
Pool Boiling Enhanced by Electric Field Distribution in Microsized Space
,”
4th Micro and Nano Flows Conference
(
MNF
), London, Sept. 7–10, pp. 1–4
24.
Kano
,
I.
,
2015
, “
Pool Boiling Enhancement by Electrohydrodynamic Force and Diamond Coated Surface
,”
ASME J. Heat Transfer
,
137
(
9
), p.
091006
.
25.
Zuber
,
N.
,
1958
, “
On the Stability of Boiling Heat Transfer
,”
Trans. ASME
,
80
, pp.
711
720
.
26.
Nishio
,
S.
,
Gotoh
,
T.
, and
Nagai
,
N.
,
1997
, “
Observation of Boiling Structures in High Heat-Flux Boiling
,”
Int. J. Heat Mass Transfer
,
41
(
21
), pp.
3191
3201
.
27.
Lüttch
,
T.
,
Marquardt
,
W.
,
Buchholz
,
M.
, and
Auracher
,
H.
,
2004
, “
Towards a Unifying Heat Transfer Correlation for the Entire Boiling Curve
,”
Int. J. Therm. Sci.
,
43
(
12
), pp.
1125
1139
.
28.
Darabi
,
J.
,
Ohadi
,
M. M.
, and
DeVoe
,
D.
,
2001
, “
An Electrohydrodynamic Polarization Micropump for Electronic Cooling
,”
J. Microelectromech. Syst.
,
10
(
1
), pp.
98
106
.
29.
Darabi
,
J.
, and
Ekula
,
K.
,
2003
, “
Development of a Chip-Integrated Micro Cooling Device
,”
Microelectron. J.
,
34
(
1
), pp.
1067
1074
.
30.
Moghaddam
,
S.
, and
Ohadi
,
M. M.
,
2005
, “
Effect of Electrode Geometry on Performance of an EHD Thin-Film Evaporator
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
978
986
.
31.
Hahne
,
E.
, and
Diesselhorst
,
T.
,
1978
, “
Hydrodynamic and Surface Effects on the Peak Heat Flux in Pool Boiling
,”
6th International Heat Transfer Conference
, Toronto, ON, Canada, Aug. 7–11, Vol.
1
, pp.
209
214
.
You do not currently have access to this content.