The nanocapillarity phenomenon involves ultralow frictional flow of water molecules through nanoscale channels, and here we study this using exceptionally large number of nanochannels within graphene oxide (GO) laminates. The nanoconfined water molecules in GO nanochannels form square lattice (as in the ice bilayer), which melts and jumps across the channels, similar to slip flow, with mean speed of the order of 1 m/s. This ease of liquid spreading in GO laminate is used to delay the critical heat flux (CHF) phenomenon in water pool boiling, by preventing formation/growth of dry spots. The water nanocapillarity speed is derived based on the measured water penetration flux, and the CHF enhancement (up to 140%) is demonstrated on a 1-μm-thick GO laminate. The GO laminate offers efficient surface modifications for increased transport efficiency (and safety margin) of pool boiling heat transfer systems.

References

1.
Kim
,
H. D.
, and
Kim
,
M. H.
,
2007
, “
Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids
,”
Appl. Phys. Lett.
,
91
(
1
), p.
014104
.
2.
Rahman
,
M. M.
,
Ölc¸eroğlu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
11234
.
3.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.
4.
Chu
,
K.-H.
,
Soo Joung
,
Y.
,
Enright
,
R.
,
Buie
,
C. R.
, and
Wang
,
E. N.
,
2013
, “
Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement
,”
Appl. Phys. Lett.
,
102
(
15
), p.
151602
.
5.
Ahn
,
H. S.
,
Jo
,
H. J.
,
Kang
,
S. H.
, and
Kim
,
M. H.
,
2011
, “
Effect of Liquid Spreading Due to Nano/Microstructures on the Critical Heat Flux During Pool Boiling
,”
Appl. Phys. Lett.
,
98
(
7
), p.
071908
.
6.
Ahn
,
H. S.
,
Park
,
G.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2012
, “
Wicking and Spreading of Water Droplets on Nanotubes
,”
Langmuir
,
28
(
5
), pp.
2614
2619
.
7.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,”
Ph.D. thesis
, University of California, Los Angeles, Los Angeles, CA.
8.
Park
,
S. D.
,
Won Lee
,
S.
,
Kang
,
S.
,
Bang
,
I. C.
,
Kim
,
J. H.
,
Shin
,
H. S.
,
Lee
,
D. W.
, and
Won Lee
,
D.
,
2010
, “
Effects of Nanofluids Containing Graphene/Graphene-Oxide Nanosheets on Critical Heat Flux
,”
Appl. Phys. Lett.
,
97
(
2
), p.
023103
.
9.
Ahn
,
H. S.
,
Kim
,
J. M.
, and
Kim
,
M. H.
,
2013
, “
Experimental Study of the Effect of a Reduced Graphene Oxide Coating on Critical Heat Flux Enhancement
,”
Int. J. Heat Mass Transfer
,
60
, pp.
763
771
.
10.
Ahn
,
H. S.
,
Kim
,
J. M.
,
Park
,
C.
,
Jang
,
J. W.
,
Lee
,
J. S.
,
Kim
,
H.
,
Kaviany
,
M.
, and
Kim
,
M. H.
,
2013
, “
A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure During Boiling
,”
Sci. Rep.
,
3
, p.
01960
.
11.
Ahn
,
H. S.
,
Kim
,
J. M.
,
Kim
,
T.
,
Park
,
S. C.
,
Kim
,
J. M.
,
Park
,
Y.
,
Yu
,
D. I.
,
Hwang
,
K. W.
,
Jo
,
H.
,
Park
,
H. S.
,
Kim
,
H.
, and
Kim
,
M. H.
,
2014
, “
Enhanced Heat Transfer is Dependent on Thickness of Graphene Films: The Heat Dissipation During Boiling
,”
Sci. Rep.
,
4
, p.
6276
.
12.
Kim
,
J. M.
,
Kim
,
T.
,
Kim
,
J.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2014
, “
Effect of a Graphene Oxide Coating Layer on Critical Heat Flux Enhancement Under Pool Boiling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
919
927
.
13.
Kim
,
J. M.
,
Kim
,
J. H.
,
Park
,
S. C.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2016
, “
Nucleate Boiling in Graphene Oxide Colloids: Morphological Change and Critical Heat Flux Enhancement
,”
Int. J. Multiphase Flow
,
85
, pp.
209
222
.
14.
Arik
,
M.
, and
Bar-Cohen
,
A.
,
2003
, “
Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHF of Dielectric Liquids
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3755
3764
.
15.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.
16.
Liter
,
S. G.
, and
Kaviany
,
M.
,
2001
, “
Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4287
4311
.
17.
Nair
,
R. R.
,
Wu
,
H. A.
,
Jayaram
,
P. N.
,
Grigorieva
,
I. V.
, and
Geim
,
A. K.
,
2012
, “
Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes
,”
Science
,
335
(
6067
), pp.
442
444
.
18.
Joshi
,
R. K.
,
Carbone
,
P.
,
Wang
,
F. C.
,
Kravets
,
V. G.
,
Su
,
Y.
,
Grigorieva
,
I. V.
,
Wu
,
H. A.
,
Geim
,
A. K.
, and
Nair
,
R. R.
,
2014
, “
Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes
,”
Science
,
343
(
6172
), pp.
752
754
.
19.
Sun
,
P.
,
Liu
,
H.
,
Wang
,
K.
,
Zhong
,
M.
,
Wu
,
D.
, and
Zhu
,
H.
,
2015
, “
Ultrafast Liquid Water Transport Through Graphene-Based Nanochannels Measured by Isotope Labelling
,”
Chem. Commun.
,
51
(
15
), pp.
3251
3254
.
20.
Tong
,
W. L.
,
Ong
,
W.-J.
,
Chai
,
S.-P.
,
Tan
,
M. K.
, and
Hung
,
Y. M.
,
2015
, “
Enhanced Evaporation Strength Through Fast Water Permeation in Graphene-Oxide Deposition
,”
Sci. Rep.
,
5
, p. 11896.
21.
Caupin
,
F.
,
Cole
,
M. W.
,
Balibar
,
S.
, and
Treiner
,
J.
,
2008
, “
Absolute Limit for the Capillary Rise of a Fluid
,”
Europhys. Lett.
,
82
(
5
), p.
56004
.
22.
Qiao
,
Y.
,
Xu
,
X.
, and
Li
,
H.
,
2013
, “
Conduction of Water Molecules Through Graphene Bilayer
,”
Appl. Phys. Lett.
,
103
(
23
), p.
233106
.
23.
Boukhvalov
,
D. W.
,
Katsnelson
,
M. I.
, and
Son
,
Y.-W.
,
2013
, “
Origin of Anomalous Water Permeation Through Graphene Oxide Membrane
,”
Nano Lett.
,
13
(
8
), pp.
3930
3935
.
24.
Wei
,
N.
,
Peng
,
X.
, and
Xu
,
Z.
,
2014
, “
Breakdown of Fast Water Transport in Graphene Oxides
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
,
89
(
1
), p.
012113
.
25.
Koenig
,
S. P.
,
Wang
,
L.
,
Pellegrino
,
J.
, and
Bunch
,
J. S.
,
2012
, “
Selective Molecular Sieving Through Porous Graphene
,”
Nat. Nanotechnol.
,
7
(
11
), pp.
728
732
.
26.
Huang
,
H.
,
Song
,
Z.
,
Wei
,
N.
,
Shi
,
L.
,
Mao
,
Y.
,
Ying
,
Y.
,
Sun
,
L.
,
Xu
,
Z.
, and
Peng
,
X.
,
2013
, “
Ultrafast Viscous Water Flow Through Nanostrand-Channelled Graphene Oxide Membranes
,”
Nat. Commun.
,
4
, p.
2979
.
27.
Paul
,
D. R.
,
2012
, “
Creating New Types of Carbon-Based Membranes
,”
Science
,
335
(
6067
), pp.
413
414
.
28.
Li
,
D.
,
Muller
,
M. B.
,
Gilje
,
S.
,
Kaner
,
R. B.
, and
Wallace
,
G. G.
,
2008
, “
Processable Aqueous Dispersions of Graphene Nanosheets
,”
Nat. Nanotechnol.
,
3
(
2
), pp.
101
105
.
29.
Dikin
,
D. A.
,
Stankovich
,
S.
,
Zimney
,
E. J.
,
Piner
,
R. D.
,
Dommett
,
G. H. B.
,
Evmenenko
,
G.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2007
, “
Preparation and Characterization of Graphene Oxide Paper
,”
Nature
,
448
(
7152
), pp.
457
460
.
30.
Cote
,
L. J.
,
Kim
,
F.
, and
Huang
,
J.
,
2008
, “
Langmuir−Blodgett Assembly of Graphite Oxide Single Layers
,”
J. Am. Chem. Soc.
,
131
(
3
), pp.
1043
1049
.
31.
Haramura
,
Y.
, and
Katto
,
Y.
,
1983
, “
A New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
389
399
.
32.
Lerf
,
A.
,
Buchsteiner
,
A.
,
Pieper
,
J.
,
Schöttl
,
S.
,
Dekany
,
I.
,
Szabo
,
T.
, and
Boehm
,
H. P.
,
2006
, “
Hydration Behavior and Dynamics of Water Molecules in Graphite Oxide
,”
J. Phys. Chem. Solids
,
67
(
5–6
), pp.
1106
1110
.
33.
Cerveny
,
S.
,
Barroso-Bujans
,
F.
,
Alegria
,
A.
, and
Colmenero
,
J.
,
2010
, “
Dynamics of Water Intercalated in Graphite Oxide
,”
J. Phys. Chem. C
,
114
(
6
), pp.
2604
2612
.
34.
Algara-Siller
,
G.
,
Lehtinen
,
O.
,
Wang
,
F. C.
,
Nair
,
R. R.
,
Kaiser
,
U.
,
Wu
,
H. A.
,
Geim
,
A. K.
, and
Grigorieva
,
I. V.
,
2015
, “
Square Ice in Graphene Nanocapillaries
,”
Nature
,
519
(
7544
), pp.
443
445
.
35.
Andrikopoulos
,
K. S.
,
Bounos
,
G.
,
Tasis
,
D.
,
Sygellou
,
L.
,
Drakopoulos
,
V.
, and
Voyiatzis
,
G. A.
,
2014
, “
The Effect of Thermal Reduction on the Water Vapor Permeation in Graphene Oxide Membranes
,”
Adv. Mater. Interfaces
,
1
(
8
), p. 2400250.
36.
Duan
,
C.
,
Karnik
,
R.
,
Lu
,
M.-C.
, and
Majumdar
,
A.
,
2012
, “
Evaporation-Induced Cavitation in Nanofluidic Channels
,”
Proc. Natl. Acad. Sci.
,
109
(
10
), pp.
3688
3693
.
37.
Kaviany
,
M.
,
2012
,
Principles of Heat Transfer in Porous Media
,
Springer Science & Business Media
, New York.
38.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
, p.
413
.
You do not currently have access to this content.