In conventional jet impingement array heat sinks, all the spent coolant is extracted from component edges, resulting in cross-flow interference and nonuniform heat transfer. Jet impingement arrays with interspersed fluid extraction ports can reduce cross-flow, improving heat transfer uniformity and reducing pumping loads. While this configuration offers technical advantages, limited pressure drop and heat transfer data are available. In this investigation, simulations are performed for laminar single-phase jet impingement arrays with interspersed fluid extraction ports over varying flow rates (Rej = 20–500), fluid transport properties (Pr = 1–100), and geometries (jet pitch to diameter ratios of 1.8–7.1 and jet diameter to gap height ratios of 0.1–4.0). The simulation approach is validated for isolated jet impingement, and grid sensitivity studies are performed to quantify numerical uncertainty. Over 1000 randomized cases are evaluated to develop new correlations for Nusselt number and pressure-drop k-factors. Conjugate heat transfer studies are performed to compare heat sinks (5 × 5 mm heated, 500 W m−2 heat flux) employing jet arrays with interspersed fluid extraction ports, microchannels, and jet arrays with edge fluid extraction. The design with jet arrays with interspersed fluid extraction ports yields lower average temperatures, improved temperature uniformity, and modest pressure drops. This study provides new data for jet impingement thermal management and highlights the technical potential of configurations with interspersed fluid extraction ports.

References

References
1.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
,
2007
, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.
2.
Huber
,
A. A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet–Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.
3.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
,
1990
, “
Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
891
898
.
4.
Lee
,
D. Y.
, and
Vafai
,
K.
,
1999
, “
Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1555
1568
.
5.
Fabbri
,
M.
,
Jiang
,
S.
, and
Dhir
,
V. K.
,
2003
, “
Experimental Investigation of Single-Phase Micro Jets Impingement Cooling for Electronics Applications
,”
ASME
Paper No. HT2003-47162.
6.
Fabbri
,
M.
, and
Dhir
,
V. K.
,
2005
, “
Optimized Heat Transfer for High Power Electronic Cooling Using Arrays of Microjets
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
760
769
.
7.
Sleiti
,
A. K.
, and
Kapat
,
J. S.
,
2006
, “
An Experimental Investigation of Liquid Jet Impingement and Single-Phase Spray Cooling Using Polyalphaolefin
,”
Exp. Heat Transfer
,
19
(
2
), pp.
149
163
.
8.
Maddox
,
J. F.
,
Knight
,
R. W.
, and
Bhavnani
,
S. H.
,
2015
, “
Local Thermal Measurements of a Confined Array of Impinging Liquid Jets for Power Electronics Cooling
,”
Semi-Therm Symposium
, San Jose, CA, Mar. 15–19, pp.
228
234
.
9.
Hollworth
,
B. R.
, and
Durbin
,
M.
,
1992
, “
Impingement Cooling of Electronics
,”
ASME J. Heat Transfer
,
114
(
3
), pp.
607
613
.
10.
Oh
,
C. H.
,
Lienhard
,
J. H.
,
Younis
,
H. F.
,
Dahbura
,
R. S.
, and
Michels
,
D.
,
1998
, “
Liquid Jet-Array Cooling Modules for High Heat Fluxes
,”
AIChE J.
,
44
(
4
), pp.
769
779
.
11.
Han
,
Y.
,
Yong
,
J. L.
,
Lau
,
B. L.
,
Zhang
,
X.
,
Leong
,
Y. C.
,
Choo
,
K. F.
, and
Chan
,
P. K.
,
2013
, “
Thermal Management of Hotspots Using Upstream Laminar Micro-Jet Impinging Array
,”
IEEE Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 11–13, pp.
83
87
.
12.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J. M.
,
Maveety
,
J. G.
,
Sanchez
,
E. A.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2004
, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromechan. Syst.
,
13
(
5
), pp.
833
842
.
13.
Liu
,
Z.
, and
Qiu
,
Y.
,
2005
, “
Critical Heat Flux of Steady Boiling for Water Jet Impingement in Flat Stagnation Zone on Superhydrophilic Surface
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
726
729
.
14.
Brignoni
,
L.
, and
Garimella
,
S.
,
1999
, “
Experimental Optimization of Confined Air Jet Impingement on a Pin Fin Heat Sink
,”
IEEE Trans. Compon. Packag. Technol.
,
22
(
3
), pp.
399
404
.
15.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
,
2010
, “
Heat Transfer Correlations of Perpendicularly Impinging Jets on a Hemispherical-Dimpled Surface
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3045
3056
.
16.
Berger
,
D.
,
Bezama
,
R.
,
Herron
,
L.
, and
Michel
,
B.
,
2007
, “
High Performance Integrated MLC Cooling Device for High Power Density ICS and Method for Manufacturing
,” U.S. Patent No. 2,008,006,0792.
17.
Natarajan
,
G.
, and
Bezama
,
R.
,
2007
, “
Microjet Cooler With Distributed Returns
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
779
787
.
18.
Onstad
,
A.
,
Elkins
,
C.
, and
Moffat
,
R.
,
2009
, “
Full-Field Flow Measurements and Heat Transfer of a Compact Jet Impingement Array With Local Extraction of Spent Fluid
,”
ASME J. Heat Transfer
,
131
(
8
), p.
082201
.
19.
Rhee
,
D.
,
Yoon
,
P.
, and
Cho
,
H.
,
2003
, “
Local Heat/Mass Transfer and Flow Characteristics of Array Impinging Jets With Effusion Holes Ejecting Spent Air
,”
Int. J. Heat Mass Transfer
,
46
(
6
), pp.
1049
1061
.
20.
Husain
,
A.
,
Al-Azri
,
N. A.
, and
Al-Rawahi
,
N. Z. H.
,
2015
, “
Comparative Performance Analysis of Microjet Impingement Cooling Models With Different Spent-Flow Schemes
,”
J. Thermophys. Heat Transfer
,
30
(
2
), pp.
466
472
.
21.
Brunschwiler
,
T.
,
Rothuizen
,
H.
,
Fabbri
,
M.
,
Kloter
,
U.
,
Michel
,
B.
,
Bezama
,
R. J.
, and
Natarajan
,
G.
,
2006
, “
Direct Liquid Jet-Impingement Cooling With Micronsized Nozzle Array and Distributed Return Architecture
,”
Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, pp.
196
203
.
22.
Hoberg
,
T.
,
Onstad
,
A.
, and
Eaton
,
J.
,
2010
, “
Heat Transfer Measurements for Jet Impingement Arrays With Local Extraction
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
460
467
.
23.
Han
,
Y.
,
Lau
,
B. L.
, and
Zhang
,
H.
,
2014
, “
Package-Level Si-Based Micro-Jet Impingement Cooling Solution With Multiple Drainage Micro-Trenches
,”
IEEE Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 7–12, pp. 330–334.
24.
Rattner
,
A. S.
, “
Heat Transfer and Pressure Drop Simulation Results for Jet Impingement Array Heat Sink With Interspersed Fluid Extraction Ports
,” https://scholarsphere.psu.edu/files/bv73c0509 (Online).
25.
Kneer
,
R.
,
Haustein
,
H. D.
,
Ehrenpreis
,
C.
, and
Rohlfs
,
W.
,
2014
, “
Flow Structures and Heat Transfer in Submerged and Free Laminar Jets
,”
International Heat Transfer Conference
, Kyoto, Japan, Paper No. IHTC15-KN28.
26.
COMSOL
,
2015
, “
COMSOL Multiphysics
,” COMSOL, Inc., Stockholm, Sweden.
27.
Johnson
,
C.
,
1987
,
Numerical Solution of Partial Differential Equations by the Finite Element Method
,
Cambridge University Press
,
Cambridge, UK
.
28.
Holzbecher
,
E.
, and
Si
,
H.
,
2008
, “
Accuracy Tests for COMSOL and Delaunay Meshes
,”
The COMSOL Conference
, Hannover, Germany.
29.
Daniels
,
A. K.
, and
Ye
,
B. S.
,
2013
, “
Triangular Prism Element Optimization for Mesh Visualization of Printed Circuit Boards
,”
International Conference on Modeling
, Simulation and Visualization Methods (
MSV
), Las Vegas, NV, July 22–25, pp. 67–73.
30.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
31.
Liu
,
X.
,
Gabour
,
L. A.
, and
Lienhard
,
J. H.
,
1993
, “
Stagnation-Point Heat Transfer During Impingement of Laminar Liquid Jets: Analysis Including Surface Tension
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
99
106
.
32.
Nellis
,
G.
, and
Klein
,
S. A.
,
2009
,
Heat Transfer
,
Cambridge University Press
,
New York
.
33.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.
You do not currently have access to this content.