Multilayered piezoelectric structures have special applications for vibration control, and they often serve in a thermoelastic coupling environment. In this work, the fractional-order generalized thermoelasticity theory is used to investigate the dynamic thermal and elastic behavior of a bilayer piezoelectric–thermoelastic plate with temperature-dependent properties. The thermal contact resistance is implemented to describe the interfacial thermal wave propagation. The governing equations for the bilayer piezoelectric–thermoelastic plate with temperature-dependent properties are formulated and then solved by means of Laplace transformation and Riemann-sum approximation. The distributions of the nondimensional temperature, displacement, and stress are obtained and illustrated graphically. According to the numerical results, the effects of the thermal contact resistance, the ratio of the material properties between different layers, the temperature-dependent properties, and the fractional-order parameters on the distributions of the considered quantities are revealed in different cases and some remarkable conclusions are obtained. The investigation helps gain insights into the optimal design of actuators, sensors, which are made of piezoelectric materials.

References

References
1.
Xu
,
Z. D.
,
Liao
,
Y. X.
,
Ge
,
T.
, and
Xu
,
C.
,
2016
, “
Experimental and Theoretical Study on Viscoelastic Dampers With Different Matrix Rubbers
,”
ASCE J. Eng. Mech.
,
142
(
8
), p.
04016051
.
2.
Xu
,
Z. D.
,
Jia
,
D. H.
, and
Zhang
,
X. C.
,
2012
, “
Performance Tests and Mathematical Model Considering Magnetic Saturation for Magnetorheological Damper
,”
J. Intell. Mater. Syst. Struct.
,
23
(
12
), pp.
1331
1349
.
3.
Soong
,
T. T.
,
1988
, “
State-of-the-Art Review: Active Structural Control in Civil Engineering
,”
Eng. Struct.
,
10
(
2
), pp.
74
84
.
4.
Han
,
J. H.
,
Rew
,
K. H.
, and
Lee
,
I.
,
1997
, “
An Experimental Study of Active Vibration Control of Composite Structures With a Piezo Ceramic Actuator and a Piezo-Film Sensors
,”
Smart Mater. Struct.
,
6
(
5
), pp.
549
558
.
5.
Brennan
,
M. J.
,
Day
,
M. J.
, and
Randall
,
R. J.
,
1998
, “
An Experiment Investigation Into the Semi-Active and Active Control of Longitudinal Vibration in a Large Tie-Rod Structure
,”
ASME J. Vib. Acoust.
,
120
(
1
), pp.
1
12
.
6.
Chen
,
G.
,
Garrett
,
G. T.
,
Chen
,
C.
, and
Cheng
,
F. Y.
,
2004
, “
Piezoelectric Friction Dampers for Earthquake Mitigation of Buildings: Design, Fabrication, and Characterization
,”
Struct. Eng. Mech.
,
17
(3–4), pp.
3
4
.
7.
Lord
,
H. W.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
309
.
8.
Green
,
A. E.
, and
Lindsany
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elast.
,
2
(
1
), pp.
1
7
.
9.
Mindlin
,
R. D.
,
1974
, “
Equations of High Frequency Vibrations of Thermo-Piezoelectric Plate
,”
Int. J. Solids Struct.
,
10
(
6
), pp.
625
637
.
10.
Chandrasekharaiah
,
D. S.
,
1998
, “
A Generalized Linear Thermoelasticity Theory for Piezoelectric Media
,”
Acta Mech.
,
71
(1), pp.
39
49
.
11.
Ma
,
Y. B.
, and
He
,
T. H.
,
2016
, “
Dynamic Response of a Generalized Piezoelectric-Thermoelastic Problem Under Fractional Order Theory of Thermoelasticity
,”
Mech. Adv. Mater. Struct.
,
23
(
10
), pp.
1173
1180
.
12.
Li
,
W. G.
,
Li
,
D. J.
,
Zhang
,
C. Z.
, and
Fang
,
D. N.
,
2012
, “
Modeling the Effect of Temperature and Damage on the Fracture Strength of Ultra-High Temperature Ceramics
,”
Int. J. Fract.
,
176
(
2
), pp.
181
188
.
13.
Youssef
,
H. M.
, and
El-Bary
,
A. A.
,
2006
, “
Thermal Shock Problem of a Generalized Thermoelastic Layered Composite Material With Variable Thermal Conductivity
,”
Math. Probl. Eng.
,
2006
, pp.
1
14
.
14.
Hosseini-Tehrani
,
P.
,
Eslami
,
M. R.
, and
Shojaeefard
,
M. H.
,
2003
, “
Generalized Thermoelastic Analysis of Layer Interface Excited by Pulsed Laser Heating
,”
Eng. Anal. Boundary Elem.
,
27
(
9
), pp.
863
869
.
15.
Xue
,
Z. N.
,
Yu
,
Y. J.
, and
Tian
,
X. G.
,
2015
, “
Transient Responses of Bi-Layered Structure Based on Generalized Thermoelasticity: Interfacial Conditions
,”
Int. J. Mech. Sci.
,
99
, pp.
179
186
.
16.
Caputo
,
M.
,
1974
, “
Vibrations on an Infinite Viscoelastic Layer With a Dissipative Memory
,”
J. Acoust. Soc. Am.
,
56
(
3
), pp.
897
904
.
17.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
18.
Koeller
,
R. C.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. App. Mech.
,
51
(
2
), pp.
299
307
.
19.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Heredity Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
15
67
.
20.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
21.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Integrals and Derivatives: Theory and Applications
,
Wiley
,
New York
.
22.
Povstenko
,
Y. Z.
,
2005
, “
Fractional Heat Conduction Equation and Associated Thermal Stress
,”
J. Therm. Stresses
,
28
(1), pp.
83
102
.
23.
Youssef
,
H. M.
, and
Al-Lehaibi
,
E. A.
,
2010
, “
Variational Principle of Fractional Order Generalized Thermoelasticity
,”
Appl. Math. Lett.
,
23
(
10
), pp.
1183
1187
.
24.
Sherief
,
H. H.
,
El-Sayed
,
A. A. M.
, and
El-Latief
,
A. M. A.
,
2010
, “
Fractional Order Theory of Thermoelasticity
,”
Int. J. Solids Struct.
,
47
(
2
), pp.
269
275
.
25.
Ezzat
,
M. A.
,
El-Karamany
,
A. S.
, and,
El-Bary
,
A. A.
,
2015
, “
On Thermo-Viscoelasticity With Variable Thermal Conductivity and Fractional-Order Heat Transfer
,”
Int. J. Thermophys.
,
36
(
7
), pp.
1684
1697
.
26.
Hamza
,
F.
,
El-Latief
,
A. M. A.
, and
Abdou
,
M.
,
2016
, “
1 D Applications on Fractional Generalized Thermoelasticity Associated With Two Relaxation Times
,”
Mech. Adv. Mater. Struct.
,
23
(
6
), pp.
689
703
.
27.
Zenkour
,
A. M.
, and
Abbas
,
I. A. A.
,
2014
, “
Generalized Thermoelasticity Problem of an Annular Cylinder With Temperature-Dependent Density and Material Properties
,”
Int. J. Mech. Sci.
,
84
, pp.
54
60
.
28.
Aouadi
,
M.
,
2006
, “
Generalized Thermo-Piezoelectric Problems With Temperature-Dependent Properties
,”
Int. J. Solids Struct.
,
43
(
21
), pp.
6347
6358
.
29.
Sheoran
,
S. S.
,
Kalkal
,
K. K.
, and
Deswal
,
S.
,
2016
, “
Fractional Order Thermo-Viscoelastic Problem With Temperature Dependent Modulus of Elasticity
,”
Mech. Adv. Mater. Struct.
,
23
(
4
), pp.
407
414
.
30.
Rishin
,
V. V.
,
Lyashenko
,
B. A.
,
Akinin
,
K. G.
, and
Nadezhdin
,
G. N.
,
1973
, “
Temperature Dependence of Adhesion Strength and Elasticity of Some Heat-Resistant Coatings
,”
Strength Mater.
,
5
(
1
),pp.
123
126
.
31.
Atarashi
,
T.
, and
Minagawa
,
S.
,
1992
, “
Transient Coupled-Thermoelastic Problem of Heat Conduction in a Multilayered Composite Plate
,”
Int. J. Eng. Sci.
,
30
(
10
), pp.
1543
1550
.
32.
Durbin
,
F.
,
1973
, “
Numerical Inversion of Laplace Transforms: An Effective Improvement of Dubner and Abate’s Method
,”
Comput. J.
,
17
(
4
), pp.
371
376
.
33.
Honig
,
G.
, and
Hirdes
,
U.
,
1984
, “
A Method for the Numerical Inversion of Laplace Transforms
,”
J. Comput. Appl. Math.
,
10
(
1
), pp.
113
132
.
You do not currently have access to this content.