Thermal analysis of fluid flow is always regarded as an important research issue within cavities in order to become familiar with the characteristics of fluid flow phenomenon in enclosures. This research paper investigates the fluid and heat transfer analysis of fluid flow inside a triangular cavity using natural element methodology (NEM). This Galerkin-based methodology has been introduced for a decade and almost demonstrated its efficiency in the numerical heat transfer analysis of problems in most engineering sciences. The fluid flow contains natural convection along with conduction and radiation heat transfer with medium's walls, which have absorbing, emitting, semitransparent, and nonscattering characteristics. The final results investigate the effects of radiative and natural convection heat transfer on the fluid flow pattern as expressed in Rayleigh number, stream function, strength of natural convection regime, etc., which are checked with other similar studies presented in the literature and shows how promising NEM can be as an efficient numerical approach to improve computational precision when dealing with fluid mechanic problems.

References

References
1.
Tan
,
H. P.
, and
Lallemand
,
M.
,
1989
, “
Transient Radiative—Conductive Heat Transfer in Flat Glasses Submitted to Temperature, Flux and Mixed Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
32
(5), pp.
795
810
.
2.
Anteby
,
I.
,
Shai
,
I.
, and
Arbel
,
A.
,
2000
, “
Numerical Calculations for Combined Conduction and Radiation Transient Heat Transfer in a Semitransparent Medium
,”
Numer. Heat Transfer: Part A
,
37
(4), pp.
359
371
.
3.
Joudi
,
K. A.
,
Hussein
,
I. A.
, and
Farhan
,
A. A.
,
2004
, “
Computational Model for a Prism Shaped Storage Solar Collector With a Right Triangular Cross Section
,”
Energy Convers. Manage.
,
45
(
3
), pp.
391
409
.
4.
Kontogeorgos
,
D. A.
,
Keramida
,
E. P.
, and
Founti
,
M. A.
,
2007
, “
Assessment of Simplified Thermal Radiation Models for Engineering Calculations in Natural Gas-Fired Furnace
,”
Int. J. Heat Mass Transfer
,
50
(25–26), pp.
5260
5268
.
5.
Lei
,
C.
, and
Patterson
,
J. C.
,
2002
, “
Natural Convection in a Reservoir Sidearm Subject to Solar Radiation: Experimental Observations
,”
Exp. Fluids
,
32
(
5
), pp.
590
599
.
6.
Karyakin
,
Y. E.
,
Sokovishin
,
Y. A.
, and
Martynenko
,
O. G.
,
1998
, “
Transient Natural Convection in Triangular Enclosures
,”
Int. J. Heat Mass Transfer
,
31
(
9
), pp.
1759
1766
.
7.
Holtzman
,
G. A.
,
Hill
,
R. W.
, and
Ball
,
K. S.
,
2000
, “
Laminar Natural Convection in Isosceles Triangular Enclosures Heated From Below and Symmetrically Cooled From Above
,”
ASME J. Heat Transfer
,
122
(
3
), p.
485
.
8.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
,
3rd ed.
,
Wiley
, Hoboken, NJ.
9.
Kent
,
E. F.
,
2009
, “
Numerical Analysis of Laminar Natural Convection in Isosceles Triangular Enclosures for Cold Base and Hot Inclined Walls
,”
Mech. Res. Commun.
,
36
(
4
), pp. 497–508.
10.
Kaluri
,
R. S.
,
Anandalakshmi
,
R.
, and
Basak
,
T.
,
2010
, “
Bejan's Heatline Analysis of Natural Convection in Right-Angled Triangular Enclosures: Effects of Aspect-Ratio and Thermal Boundary Conditions
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1576
1592
.
11.
Basak
,
T.
,
Roy
,
S.
,
Babu
,
S. K.
, and
Balakrishnan
,
A. R.
,
2008
, “
Finite Element Analysis of Natural Convection Flow in a Isosceles Triangular Enclosure Due to Uniform and Non-Uniform Heating at the Side Walls
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4496
4505
.
12.
Saha
,
S. C.
, and
Khan
,
M. M. K.
,
2011
, “
A Review of Natural Convection and Heat Transfer in Attic-Shaped Space
,”
Energy Build.
,
43
(
10
), pp.
2564
2571
.
13.
Singh
,
I. V.
,
2004
, “
A Numerical Solution of Composite Heat Transfer Problems Using Meshless Method
,”
Int. J. Heat Mass Transfer
,
47
(10–11), pp.
2123
2138
.
14.
Mishra
,
S. C.
, and
Roy
,
H. K.
,
2007
, “
Solving Transient Conduction and Radiation Heat Transfer Problems Using the Lattice Boltzmann Method and the Finite Volume Method
,”
J. Comput. Phys.
,
223
(
1
), pp.
89
107
.
15.
Siegel
,
R.
, and
Howell
,
J. R.
,
1992
,
Thermal Radiation Heat Transfer
,
3rd ed.
,
Hemisphere
,
Washington, DC
.
16.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
,
New York
.
17.
Traugott
,
S. C.
,
1966
, “
Radiative Heat-Flux Potential for Nongrey Gas
,”
AIAA J.
,
4
(
3
), pp.
541
542
.
18.
Lauriat
,
G.
,
1980
, “
A Numerical Study of a Thermal Insulation Enclosure: Influence of the Radiative Transfer
,”
ASME HTD
,
8
, pp.
55
62
.
19.
Lauriat
,
G.
,
1982
, “
Combined Radiation-Convection in Gray Fluids Enclosed in Vertical Cavities
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
609
615
.
20.
Fusegi
,
T.
,
Farouk
,
B.
, and
Kuwahara
,
K.
,
1991
, “
3-d Natural Convection Radiation Interactions in a Cube Filled With Gas-Soot Mixtures
,”
Fire Saf. Sci.
,
3
, pp.
365
374
.
21.
Saleem
,
M.
,
Hossain
,
M. A.
,
Saha
,
C.
, and
Gu
,
Y. T.
,
2014
, “
Heat Transfer Analysis of Viscous Incompressible Fluid by Combined Natural Convection and Radiation in an Open Cavity
,”
Math. Probl. Eng.
,
2014
, pp.
1
14
.
22.
Sieres
,
J.
,
Campo
,
A.
,
Ridouane
,
E. H.
, and
Fernández-Seara
,
J.
,
2007
, “
Effect of Surface Radiation on Buoyant Convection in Vertical Triangular Cavities With Variable Aperture Angles
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
5139
5149
.
23.
Liu
,
L. H.
,
Tan
,
J. Y.
, and
Li
,
B. X.
,
2006
, “
Meshless Approach for Coupled Radiative and Conductive Heat Transfer in One-Dimensional Graded Index Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
101
(
2
), pp.
237
248
.
24.
Braun
,
J.
, and
Sambridge
,
M.
,
1995
, “
A Numerical Method for Solving Partial Differential Equations on Highly Irregular Evolving Grids
,”
Nature
,
376
, pp.
655
660
.
25.
Sukumar
,
N.
,
Moran
,
B.
, and
Belytschko
,
T.
,
1998
, “
The Natural Element Method in Solid Mechanics
,”
Int. J. Numer. Methods Eng.
,
43
(
5
), pp.
839
887
.
26.
Belikov, V. V., Ivanov, V. D., Kontorovich, V. K., Korytnik, S. A., and Yu Semenov A.,
1997
, “
The Non-Sibsonian Interpolation: A New Method of Interpolation of the Values of a Function on an Arbitrary Set of Points
,”
Comput. Math. Math. Phys.
,
37
(
1
), pp.
9
15
.
27.
Hiyoshi
,
H.
, and
Sugihara
,
K.
,
1999
, “
Two Generalizations of an Interpolant Based on Voronoi Diagrams
,”
Int. J. Shape Model.
,
5
(
2
), pp.
219
231
.
28.
Sukumar
,
N.
,
2003
, “
Voronoi Cell Finite Difference Method for the Diffusion Operator on Arbitrary Unstructured Grids
,”
Int. J. Numer. Methods Eng.
,
57
(
1
), pp.
1
34
.
29.
Somireddy, M., and
Rajagopal
,
A.
,
2012
, “
Meshless Natural Neighbor Galerkin Method for the Bending and Vibration Analysis of Composite Plates
,”
Compos. Struct.
,
111
, pp.
138
146
.
30.
Weidong
,
W.
, and
Cheng
,
G.
,
2013
, “
Application of Natural Element Method in Numerical Simulation of Crack Propagation
,”
Adv. Mech. Eng.
,
5
, pp.
1
6
.
31.
Zhang
,
Y.
,
Yi
,
H. L.
, and
Tan
,
H. P.
,
2013
, “
Natural Element Method for Radiative Heat Transfer in Two-Dimensional Semitransparent Medium
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
411
423
.
32.
Zhang
,
Y.
,
Yi
,
H. L.
, and
Tan
,
H. P.
,
2014
, “
Natural Element Method Analysis for Coupled Radiative and Conductive Heat Transfer in Semitransparent Medium With Irregular Geometries
,”
Int. J. Therm. Sci.
,
76
, pp.
30
42
.
33.
Basak
,
T.
,
Roy
,
S.
,
Babu
,
S. K.
, and
Balakrishnan
,
A. R.
,
2006
, “
Effects of Thermal Boundary Conditions on Natural Convection Flows Within a Square Cavity
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4525
4535
.
34.
Amlin
,
D. W.
, and
Korpela
,
S. A.
,
1979
, “
Influence of Thermal Radiation on the Temperature Distribution in a Semitransparent Solid
,”
ASME J. Heat Transfer
,
101
(
1
), pp.
76
80
.
35.
Gonzalez
,
D.
, and
Cueto
,
E.
,
2007
, “
A Natural Element Updated Lagrangian Strategy for Free-Surface Fluid Dynamics
,”
J. Comput. Phys.
,
223
(
1
), pp.
127
150
.
36.
Lewis
,
R. W.
,
Nithiarasu
,
P.
, and
Seetharamu
,
K. N.
,
2004
,
Fundamentals of the Finite Element Method for Heat and Fluid Flow
,
Wiley
, New York.
37.
Wan
,
D. C.
,
Patnaik
,
B. S. V.
, and
Wei
,
G. W. A.
,
2001
, “
A New Benchmark Quality Solution for the Buoyancy-Driven Cavity by Discrete Singular Convolution
,”
Numer. Heat Transfer, Part B
,
40
(
3
), pp.
199
228
.
38.
Moftakhari
,
A.
,
Torabi
,
F.
, and
Aghanajafi
,
C.
,
2016
, “
A Novel Energy Simulation Approach for Thermal Design of Buildings Equipped With Radiative Panels Using Inverse Methodology
,”
Energy Build.
,
113
, pp.
169
181
.
39.
Moftakhari
,
A.
, and
Aghanajafi
,
C.
,
2016
, “
An Inverse Parameter Estimation Method for Building Thermal Analysis
,”
ASME J. Sol. Energy Eng.
,
138
(
2
), p.
021004
.
40.
Moftakhari
,
A.
,
Aghanajafi
,
C.
, and
Ghazvin
,
A. M. C.
,
2016
, “
An Innovative Inverse Analysis Technique for Building Cooling Design With HVAC Systems
,”
Sci. Technol. Built Environ.
,
22
(
3
), pp.
299
316
.
41.
Moftakhari
,
A.
,
Aghanajafi
,
C.
, and
Ghazvin
,
A. M. C.
,
2016
, “
Inverse Heat Transfer Analysis of Radiator Central Heating Systems Inside Residential Buildings Using Sensitivity Analysis
,”
Inverse Probl. Sci. Eng.
,
25
(4), pp. 580–607.
42.
Moftakhari
,
A.
,
Aghanajafi
,
C.
, and
Ghazvin
,
A. M. C.
,
2016
, “
Thermal Analysis of HVAC and Solar Panels Using Genetic Optimization Algorithm
,”
J. Mech. Sci. Technol.
,
30
(
3
), pp.
1405
1412
.
43.
Moftakhari
,
A.
,
Aghanajafi
,
C.
, and
Ghazvin
,
A. M. C.
,
2015
, “
A Comparative Study of HVAC and Radiant Systems for Heating Buildings in Different Climates of Iran
,”
Indian J. Nat. Sci. (IJONS)
,
6
(31), pp.
8615
8633
.
44.
Moftakhari
,
A.
, and
Aghanajafi
,
C.
,
2015
, “
Inverse Design of Residential Room With Radiative Panels
,”
The 7th Conference on Efficient, Clean and Renewable Energy
, Tehran, Iran, pp. 75–83.
45.
Moftakhari
,
A.
,
Aghanajafi
,
C.
, and
Ghazvin
,
A. M. C.
,
2015
, “
The Use of Solar Radiative Panels for Heating Residential Buildings in Different Climates of Iran
,”
The 2nd International Conference and Exhibition on Solar Energy
, University of Tehran, Tehran, Iran, Aug. 30–31, pp. 61–66.
46.
Moftakhari
,
A.
, and
Aghanajafi
,
C.
,
2015
, “
Building Energy Consumption Using Generic Algorithm
,”
The 1st Conference on Heating, Ventilation, Air Conditioning (HVAC) and Heating and Cooling Installation
, Tehran, Iran, pp. 101–108.
47.
Moftakhari
,
A.
, and
Aghanajafi
,
C.
,
2015
, “
Inverse Design of Conductivity Coefficient in Building Equipped With Solar Panels
,”
The 6th International Conference on Heating, Ventilation, Air Conditioning (ICHVAC)
, Tehran, Iran, May 26–28, pp. 21–29.
48.
Moftakhari
,
A.
, and
Aghanajafi
,
C.
,
2015
, “
Thermal Analysis of a Residential Room Equipped With Solar Panel Using Generic Algorithm
,”
The 6th International Conference on Heating, Ventilation, Air Conditioning (ICHVAC)
, Tehran, Iran, May 26–28, pp. 39–48.
49.
Moftakhari
,
A.
, and
Ghazvin
,
A. M. C.
,
2015
, “
Estimation of Building Energy Consumption Using PSO Optimization Algorithm
,”
The 7th Conference on Efficient, Clean and Renewable Energy
, Tehran, Iran, pp. 56–63.
50.
Moftakhari
,
A.
, and
Aghanajafi
,
C.
,
2015
, “
Thermal Simulation of Residential Buildings Equipped With Fan Coils Using Inverse Analysis
,”
The 1st Conference on Heating, Ventilation, Air Conditioning (HVAC) and Heating and Cooling Installation
, Tehran, Iran, pp. 98–105.
You do not currently have access to this content.