This paper presents research for a class of recombination reaction and diffusion problems in which the Cattaneo relaxation, n-diffusion flux, and p-Fisher–Kolmogorov–Petrovsky–Piscounov (KPP) reaction are considered. Approximate analytical solutions are obtained by Adomian decomposition method (ADM) and shown graphically. Some interesting results for spatial variable and temporal variable evolution are obtained. For specified spatial variable, the temperature profiles decrease with respect to the increase of relaxation parameter and power-law index n but decrease with respect to Fisher–KPP reaction parameter p. For specified temporal variable, the temperature profiles are seem oscillating with values of the relaxation parameter and power-law index n.

References

1.
Özisik
,
M. N.
,
1993
,
Heat Conduction
,
Wiley
,
Hoboken, NJ
.
2.
Yang
,
Y. W.
,
1972
, “
Periodic Heat Transfer in Straight Fins
,”
ASME J. Heat Transfer
,
94
(
3
), pp.
310
314
.
3.
Eslinger
,
R. G.
, and
Chung
,
B. T. F.
,
1979
, “
Periodic Heat Transfer in Radiating and Convecting Fins or Fin Arrays
,”
AIAA J.
,
17
(
10
), pp.
1134
1140
.
4.
Aziz
,
A.
, and
Na
,
T. Y.
,
1981
, “
Periodic Heat Transfer in Fins With Variable Thermal Parameters
,”
Int. J. Heat Mass Transfer
,
24
(
8
), pp.
1397
1404
.
5.
Al-Sanea
,
S. A.
, and
Mujahid
,
A. A.
,
1993
, “
A Numerical Study of the Thermal Performance of Fins With Time-Dependent Boundary Conditions, Including Initial Transient Effects
,”
Warme Stoffubertragung
,
28
(
7
), pp.
417
424
.
6.
Joseph
,
D. D.
, and
Prezioso
,
L.
,
1989
, “
Heat Weaves
,”
Rev. Mod. Phys.
,
61
(
1
), pp.
41
73
.
7.
Cattaneo
,
C.
,
1948
, “
On the Conduction of Heat
,”
Atti Semin. Mat. Fis. Univ. Modena
,
3
, pp.
3
21
.
8.
Vernotte
,
P. M.
,
1958
, “
Paradoxes in the Continuous Theory of the Heat Equation
,”
C. R. Acad. Sci. Paris
,
246
(
22
), pp.
3154
3155
.
9.
Qi
,
H.
, and
Guo
,
X.
,
2014
, “
Transient Fractional Heat Conduction With Generalized Cattaneo Model
,”
Int. J. Heat Mass Transfer
,
76
, pp.
535
539
.
10.
Xu
,
G.-Y.
,
Wang
,
J.-B.
, and
Han
,
Z.
,
2016
, “
Notes on “The Cattaneo-Type Time Fractional Heat Conduction Equation for Laser Heating” [Comput. Math. Appl. 66 (2013) 824-831]
,”
Comput. Math. Appl.
,
71
(
10
), pp.
2132
2137
.
11.
Ronney
,
P.
,
1995
, “
Some Open Issues in Premixed Turbulent Combustion
,”
Mathematical Modelling in Combustion Science
(Lecture Notes in Physics),
J.
Buckmaster
and
T.
Takeno
, eds.,
Springer-Verlag
,
Berlin
, pp.
3
22
.
12.
Williams
,
F.
,
1983
,
Combustion Theory
,
Addison-Wesley
,
Reading, MA
.
13.
Zeldovich
,
Y. B.
,
Barenblatt
,
G. I.
,
Librovich
,
V. B.
, and
Makhvi-Ladze
,
G. M.
,
1985
,
The Mathematical Theory of Combustion and Explosions
,
Consultants Bureau
,
New York
.
14.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
15.
Tretyakov
,
M. V.
, and
Fedotov
,
S.
,
2001
, “
On the FKPP Equation With Gaussian Shear Advection
,”
Phys. D: Nonlinear Phenomena
,
159
(
3–4
), pp.
190
201
.
16.
Philip
,
J. R.
,
1961
, “
n-Diffusion
,”
Aust. J. Phys.
,
14
(
1
), pp.
1
13
.
17.
Wu
,
Z.
,
1985
, “
A Free Boundary Problem for Degenerate Quasilinear Parabolic Equations
,”
Nonlinear Anal.
,
9
(
9
), pp.
937
951
.
18.
Zheng
,
L.
,
Zhang
,
X.
, and
He
,
J.
,
2002
, “
Free Boundary Value Problems for a Class of Generalized Diffusion Equation
,”
J. Univ. Sci. Technol. Beijing
,
9
(
6
), pp.
422
425
.
19.
Adomian
,
G.
,
1994
,
Solving Frontier Problems of Physics: The Decomposition Method
,
Kluwer Academic Publishers
,
Boston, MA
.
20.
Adomian
,
G.
,
1988
, “
A Review of the Decomposition Method in Applied Mathematics
,”
J. Math. Anal. Appl.
,
135
(
2
), pp.
501
544
.
21.
Adomian
,
G.
,
1994
, “
On the Solution of Partial Differential Equations With Specified Boundary Conditions
,”
Math. Comput. Modell.
,
140
(
2
), pp.
569
581
.
22.
Wazwaz
,
A. M.
,
1997
,
A First Course in Integral Equations
,
World Scientific
,
Singapore
.
23.
Wazwaz
,
A. M.
,
1999
, “
The Modified Decomposition Method and Padé Approximants for Solving the Thomas–Fermi Equation
,”
Appl. Math. Comput.
,
105
(
1
), pp.
11
29
.
24.
Wazwaz
,
A. M.
,
2000
, “
A New Algorithm for Calculating Adomian Polynomials for Nonlinear Polynomials
,”
Appl. Math. Comput.
,
111
(
1
), pp.
53
69
.
25.
Mickens
,
R. E.
, and
Jordan
,
P. M.
,
2004
, “
A Positivity-Preserving Nonstandard Finite Difference Scheme for the Damped Wave Equation
,”
Numer. Methods Partial Differ. Equations
,
20
(
5
), pp.
639
649
.
26.
Cherrauault
,
Y.
,
Saccomandi
,
G.
, and
Some
,
B.
,
1992
, “
New Results for Convergence of Adomian's Method Applied to Integral Equations
,”
Math. Comput. Modell.
,
16
(
2
), pp.
85
93
.
You do not currently have access to this content.