Modeling subcooled boiling flows in vertical channels has relied heavily on the utilization of empirical correlations for the active nucleation site density, bubble departure diameter, and bubble departure frequency. Following the development and application of mechanistic modeling at low pressures, the capability of the model to resolve flow conditions at elevated pressure up to 10 bar is thoroughly assessed and compared with selected empirical models. Predictions of the mechanistic and selected empirical models are validated against two experimental data at low to elevated pressures. The results demonstrate that the mechanistic model is capable of predicting the heat and mass transfer processes. In spite of some drawbacks of the currently adopted force balance model, the results still point to the great potential of the mechanistic model to predict a wide range of flow conditions in subcooled boiling flows.

References

References
1.
Griffith
,
P.
,
Clark
,
J. A.
, and
Rohsenow
,
W. M.
,
1958
,
Void Volumes in Subcooled Boiling Systems
,
MIT Division of Industrial Cooperation
,
Cambridge, MA
.
2.
Bartolomei
,
G.
,
Brantov
,
V.
,
Molochnikov
,
Y. S.
,
Kharitonov
,
Y. V.
,
Solodkii
,
V.
,
Batashova
,
G.
, and
Mikhailov
,
V.
,
1982
, “
An Experimental Investigation of True Volumetric Vapor Content With Subcooled Boiling in Tubes
,”
Therm. Eng.
,
29
(
3
), pp.
132
135
.
3.
Shen
,
Z.
,
Yang
,
D.
,
Chen
,
G.
, and
Xiao
,
F.
,
2014
, “
Experimental Investigation on Heat Transfer Characteristics of Smooth Tube With Downward Flow
,”
Int. J. Heat Mass Transfer
,
68
, pp.
669
676
.
4.
Christensen
,
H.
,
1961
,
Power-to-Void Transfer Functions
,
Argonne National Laboratory
,
Lemont, IL
.
5.
Ozar
,
B.
,
Brooks
,
C. S.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2013
, “
Interfacial Area Transport of Vertical Upward Steam-Water Two-Phase Flow in an Annular Channel at Elevated Pressures
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
504
518
.
6.
Delhaye
,
J.
,
Maugin
,
F.
, and
Ochterbeck
,
J. M.
,
2004
, “
Void Fraction Predictions in Forced Convective Subcooled Boiling of Water Between 10 and 18 MPa
,”
Int. J. Heat Mass Transfer
,
47
(
19
), pp.
4415
4425
.
7.
Dykhuizen
,
R.
,
Roy
,
R.
, and
Kalra
,
S.
,
1984
, “
Numerical Method for the Solution of Simultaneous Nonlinear Equations and Application to Two-Fluid Model Equations of Boiling Flow
,”
Numer. Heat Transfer
,
7
(
2
), pp.
225
234
.
8.
Dykhuizen
,
R.
,
Roy
,
R.
, and
Kalra
,
S.
,
1986
, “
A Linear Time-Domain Two-Fluid Model Analysis of Dynamic Instability in Boiling Flow Systems
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
100
108
.
9.
Khater
,
H.
,
Nicoll
,
W.
, and
Raithby
,
G.
,
1982
, “
The Fast Procedure for Predicting Transient Subcooled Two-Phase Flows
,”
Int. J. Multiphase Flow
,
8
(
3
), pp.
261
278
.
10.
Krepper
,
E.
,
Končar
,
B.
, and
Egorov
,
Y.
,
2007
, “
CFD Modelling of Subcooled Boiling—Concept, Validation and Application to Fuel Assembly Design
,”
Nucl. Eng. Des.
,
237
(
7
), pp.
716
731
.
11.
Lai
,
J.
, and
Farouk
,
B.
,
1993
, “
Numerical Simulation of Subcooled Boiling and Heat Transfer in Vertical Ducts
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1541
1551
.
12.
Luthan
,
J. J.
,
1992
, “
Computational Two-Phase Flows in Conduits With and Without Heat Addition
,”
Ph.D. thesis
, Texas Tech Univeristy, Lubbock, TX.
13.
Prashanth
,
K.
, and
Seetharamu
,
K.
,
1993
, “
FEM Predictions for Two-Phase Flow in a Vertical Pipe Without the Use of Any External Correlations
,”
Int. J. Numer. Methods Heat Fluid Flow
,
3
(
6
), pp.
565
575
.
14.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.
15.
Zhou
,
J.
, and
Podowski
,
M.
,
2001
, “
Modeling and Analysis of Hydrodynamic Instabilities in Two-Phase Flow Using Two-Fluid Model
,”
Nucl. Eng. Des.
,
204
(
1
), pp.
129
142
.
16.
Yeoh
,
G.
, and
Tu
,
J.
,
2005
, “
Thermal-Hydrodynamic Modeling of Bubbly Flows With Heat and Mass Transfer
,”
AIChE J.
,
51
(
1
), pp.
8
27
.
17.
Yeoh
,
G.
,
Vahaji
,
S.
,
Cheung
,
S.
, and
Tu
,
J.
,
2014
, “
Modeling Subcooled Flow Boiling in Vertical Channels at Low Pressures–Part 2: Evaluation of Mechanistic Approach
,”
Int. J. Heat Mass Transfer
,
75
, pp.
754
768
.
18.
Yeoh
,
G. H.
,
Cheung
,
S. C. P.
,
Tu
,
J. Y.
, and
Ho
,
M. K. M.
,
2008
, “
Fundamental Consideration of Wall Heat Partition of Vertical Subcooled Boiling Flows
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3840
3853
.
19.
Yeoh
,
G. H.
,
Cheung
,
S. C. P.
,
Tu
,
J. Y.
, and
Ho
,
M. K. M.
,
2011
, “
Modeling Vertical Subcooled Boiling Flows at Low Pressures
,”
ASTM Int.
,
8
(
4
), pp.
1
20
.
20.
Yeoh
,
G. H.
, and
Tu
,
J. Y.
,
2004
, “
Population Balance Modelling for Bubbly Flows With Heat and Mass Transfer
,”
Chem. Eng. Sci.
,
59
(
15
), pp.
3125
3139
.
21.
Yeoh
,
G. H.
, and
Tu
,
J. Y.
,
2006
, “
Two-Fluid and Population Balance Models for Subcooled Boiling Flow
,”
Appl. Math. Modell.
,
30
(
11
), pp.
1370
1391
.
22.
Yeoh
,
G. H.
, and
Tu
,
J. Y.
,
2006
, “
Numerical Modelling of Bubbly Flows With and Without Heat and Mass Transfer
,”
Appl. Math. Modell.
,
30
(
10
), pp.
1067
1095
.
23.
Cheung
,
S.
,
Vahaji
,
S.
,
Yeoh
,
G.
, and
Tu
,
J.
,
2014
, “
Modeling Subcooled Flow Boiling in Vertical Channels at Low Pressures–Part 1: Assessment of Empirical Correlations
,”
Int. J. Heat Mass Transfer
,
75
, pp.
736
753
.
24.
Cheung
,
S. C.
,
Yeoh
,
G.
, and
Tu
,
J.
,
2007
, “
On the Modelling of Population Balance in Isothermal Vertical Bubbly Flows—Average Bubble Number Density Approach
,”
Chem. Eng. Proces.: Process Intensif.
,
46
(
8
), pp.
742
756
.
25.
Cheung
,
S. C.
,
Yeoh
,
G.
, and
Tu
,
J.
,
2008
, “
Population Balance Modeling of Bubbly Flows Considering the Hydrodynamics and Thermomechanical Processes
,”
AIChE J.
,
54
(
7
), pp.
1689
1710
.
26.
Yeoh
,
G. H.
,
Vahaji
,
S.
,
Cheung
,
S. C. P.
, and
Tu
,
J. Y.
,
2014
, “
Modeling Subcooled Flow Boiling in Vertical Channels at Low Pressures—Part 2: Evaluation of Mechanistic Approach
,”
Int. J. Heat Mass Transfer
,
75
, pp.
754
768
.
27.
Lemmert
,
M.
, and
Chawla
,
J.
,
1977
, “
Influence of Flow Velocity on Surface Boiling Heat Transfer Coefficient
,”
Heat Transfer Boiling
,
237
, pp.
237
247
.
28.
Tolubinsky
,
V.
, and
Kostanchuk
,
D.
,
1970
, “
Vapour Bubbles Growth Rate and Heat Transfer Intensity at Subcooled Water Boiling
,”
4th International Heat Transfer Conference
, Vol 5, pp.
132
140
.
29.
Cole
,
R.
,
1960
, “
A Photographic Study of Pool Boiling in the Region of the Critical Heat Flux
,”
AICHE J.
,
6
(
4
), pp.
533
538
.
30.
Ünal
,
H. C.
,
1976
, “
Maximum Bubble Diameter, Maximum Bubble-Growth Time and Bubble-Growth Rate During the Subcooled Nucleate Flow Boiling of Water up to 17.7 MN/m2
,”
Int. J. Heat Mass Transfer
,
19
(
6
), pp.
643
649
.
31.
Hibiki
,
T.
, and
Ishii
,
M.
,
2000
, “
One-Group Interfacial Area Transport of Bubbly Flows in Vertical Round Tubes
,”
Int. J. Heat Mass Transfer
,
43
(
15
), pp.
2711
2726
.
32.
Yun
,
B. J.
,
Park
,
G.
,
Song
,
C.
, and
Chung
,
M.
,
1997
, “
Measurements of Local Two-Phase Flow Parameters in a Boiling Flow Channel
,”
OECD/CSNI
Specialist Meeting on Advanced Instrumentation and Measurement Techniques
, pp.
243
265
.
33.
Lee
,
T. H.
,
Park
,
G. C.
, and
Lee
,
D. J.
,
2002
, “
Local Flow Characteristics of Subcooled Boiling Flow of Water in a Vertical Concentric Annulus
,”
Int. J. Multiphase Flow
,
28
(
8
), pp.
1351
1368
.
34.
Yuan
,
D.-W.
,
Pan
,
L.-M.
,
Chen
,
D.
,
Zhang
,
H.
,
Wei
,
J.-H.
, and
Huang
,
Y.-P.
,
2011
, “
Bubble Behavior of High Subcooling Flow Boiling at Different System Pressure in Vertical Narrow Channel
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3512
3520
.
35.
Sugrue
,
R. M.
,
2012
, “
The Effects of Orientation Angle, Subcooling, Heat Flux, Mass Flux, and Pressure on Bubble Growth and Detachment in Subcooled Flow Boiling
,”
Thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
36.
Shabannejad
,
S.
, and
Ashgriz
,
N.
,
2014
, “
A Model for the Bubble Lift-Off Diameter in Subcooled Boiling Flow in a Horizontal Channel
,”
WIT Trans. Eng. Sci.
,
82
(
11
), pp.
215
225
.
37.
Zeitoun
,
O.
, and
Shoukri
,
M.
,
1996
, “
Bubble Behavior and Mean Diameter in Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
118
(
1
), pp.
110
116
.
38.
Chen
,
D.
,
Pan
,
L.-M.
, and
Ren
,
S.
,
2012
, “
Prediction of Bubble Detachment Diameter in Flow Boiling Based on Force Analysis
,”
Nucl. Eng. Des.
,
243
, pp.
263
271
.
39.
Chu
,
I. C.
,
No
,
H. C.
, and
Song
,
C. H.
,
2011
, “
Bubble Lift-Off Diameter and Nucleation Frequency in Vertical Subcooled Boiling Flow
,”
J. Nucl. Sci. Technol.
,
48
(
6
), pp.
936
949
.
40.
Hong
,
G.
,
Yan
,
X.
,
Yang
,
Y. H.
,
Xie
,
T. Z.
, and
Xu
,
J. J.
,
2012
, “
Bubble Departure Size in Forced Convective Subcooled Boiling Flow Under Static and Heaving Conditions
,”
Nucl. Eng. Des.
,
247
, pp.
202
211
.
41.
Zuber
,
N.
,
1961
, “
The Dynamics of Vapor Bubbles in Nonuniform Temperature Fields
,”
Int. J. Heat Mass Transfer
,
2
(
1–2
), pp.
83
98
.
42.
Thorncroft
,
G. E.
,
Klausnera
,
J. F.
, and
Mei
,
R.
,
1998
, “
An Experimental Investigation of Bubble Growth and Detachment in Vertical Upflow and Downflow Boiling
,”
Int. J. Heat Mass Transfer
,
41
(
23
), pp.
3857
3871
.
43.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2005
, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part II—Model Validation
,”
ASME J. Heat Transfer
,
127
(
2
), pp.
141
148
.
44.
Lin
,
M.
, and
Chen
,
P.
,
2012
, “
Photographic Study of Bubble Behavior in Subcooled Flow Boiling Using R-134a at Low Pressure Range
,”
Ann. Nucl. Energy
,
49
, pp.
23
32
.
45.
Euh
,
D.
,
Ozar
,
B.
,
Hibiki
,
T.
,
Ishii
,
M.
, and
Song
,
C.-H.
,
2010
, “
Characteristics of Bubble Departure Frequency in a Low-Pressure Subcooled Boiling Flow
,”
J. Nucl. Sci. Technol.
,
47
(
7
), pp.
608
617
.
You do not currently have access to this content.