Turbine blade temperature measurements are important for monitoring the turbine engine performance to protect the hot components from damage due to excess temperatures. However, the reflected radiation from the blades and the surrounding environment complicate the blade temperature measurements by optical pyrometers. This study characterizes the effect of the reflected radiation on the effective spectral emissivity of a three-dimensional turbine blade in a confined turbine space for optical pyrometry temperature measurements. The effective spectral emissivity distribution on a three-dimensional blade was numerically determined for various wavelengths (0.8–15.0 μm) and actual blade surface emissivities for a specified turbine blade model. When the actual spectral emissivity of the blade surface is assumed to be 0.5, the effective spectral emissivity varies from 0.5 to 0.538 at the longer wavelength of 10.0 μm and further increases from 0.5 to 1.396 at the shorter wavelength of 0.9 μm. The results show that the effective emissivity distributions at shorter wavelengths differ greatly from those at longer wavelengths. There are also obvious differences between the effective spectral emissivity and the actual surface emissivity at shorter wavelengths. The effect of the effective emissivity on the temperature measurement accuracy, when using the optical pyrometry, was also investigated for various wavelengths (0.8–15.0 μm). The results show that the radiation reflected from the blades has less effect on the temperature measurements than on the effective emissivity, especially at the shorter wavelengths of 0.8–3.0 μm. However, the temperature measurements still need to be corrected using the effective spectral emissivity to improve the temperature calculation accuracy. This analysis provides guidelines for choosing the optimum measurement wavelengths for optical pyrometry in turbine engines.

References

1.
Li
,
Y. G.
,
2002
, “
Performance-Analysis-Based Gas Turbine Diagnostics: A Review
,”
Proc. Inst. Mech. Eng., Part A
,
216
(
5
), pp.
363
377
.
2.
Poullikkas
,
A.
,
2005
, “
An Overview of Current and Future Sustainable Gas Turbine Technologies
,”
Renewable and Sustainable Energy Reviews
9
(
5
), pp.
409
443
.
3.
Wright
,
I. G.
, and
Gibbons
,
T. B.
,
2007
, “
Recent Developments in Gas Turbine Materials and Technology and Their Implications for Syngas Firing
,”
Int. J. Hydrogen Energy
,
32
(
16
), pp.
3610
3621
.
4.
Garg
,
S.
,
2013
, “
Aircraft Turbine Engine Control Research at NASA Glenn Research Center
,”
J. Aerosp. Eng.
,
26
(
2
), pp.
422
438
.
5.
Yuri
,
M.
,
Masada
,
J.
,
Tsukagoshi
,
K.
,
Ito
,
E.
, and
Hada
,
S.
,
2013
, “
Development of 1600 C-Class High-Efficiency Gas Turbine for Power Generation Applying J-Type Technology
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
50
(
3
), pp.
1
10
.
6.
Pfefferkorn
,
F. E.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
,
2003
, “
Surface Temperature Measurement of Semi-Transparent Ceramics by Long-Wavelength Pyrometry
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
48
56
.
7.
Ranc
,
N.
,
Pina
,
V.
,
Sutter
,
G.
, and
Philippon
,
S.
,
2004
, “
Temperature Measurement by Visible Pyrometry: Orthogonal Cutting Application
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
931
936
.
8.
Bendada
,
A.
, and
Lamontagne
,
M.
,
2004
, “
A New Infrared Pyrometer for Polymer Temperature Measurement During Extrusion Moulding
,”
Infrared Phys. Technol.
,
46
(
1–2
), pp.
11
15
.
9.
Simmons
,
D. F.
,
Fortgang
,
C. M.
, and
Holtkamp
,
D. B.
,
2005
, “
Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser Cathodes
,”
Rev. Sci. Instrum.
,
76
(
4
), p.
044901
.
10.
Pfänder
,
M.
,
Lüpfert
,
E.
, and
Heller
,
P.
,
2006
, “
Pyrometric Temperature Measurements on Solar Thermal High Temperature Receivers
,”
ASME J. Sol. Energy Eng.
,
128
(
3
), pp.
285
292
.
11.
Payri
,
F.
,
Pastor
,
J. V.
,
García
,
J. M.
, and
Pastor
,
J. M.
,
2007
, “
Contribution to the Application of Two-Colour Imaging to Diesel Combustion
,”
Meas. Sci. Technol.
,
18
(
8
), pp.
2579
2598
.
12.
Madura
,
H.
,
Kastek
,
M.
, and
Piatkowski
,
T.
,
2007
, “
Automatic Compensation of Emissivity in Three-Wavelength Pyrometers
,”
Infrared Phys. Technol.
,
51
(
1
), pp.
1
8
.
13.
Dai
,
J. M.
,
Wang
,
X. B.
, and
Liu
,
X. D.
,
2008
, “
Peak-Wavelength Method for Temperature Measurement
,”
Int. J. Thermophys.
,
29
(
3
), pp.
1116
1122
.
14.
Densmore
,
J. M.
,
Biss
,
M. M.
,
McNesby
,
K. L.
, and
Homan
,
B. E.
,
2011
, “
High-Speed Digital Color Imaging Pyrometry
,”
Appl. Opt.
,
50
(
17
), pp.
2659
2665
.
15.
Fu
,
T. R.
,
Zhao
,
H.
,
Zeng
,
J.
,
Zhong
,
M. H.
, and
Shi
,
C. L.
,
2010
, “
Two-Color Optical CCD-Based Pyrometer Using a Two-Peak Filter
,”
Rev. Sci. Instrum.
,
81
(
12
), p.
124903
.
16.
Fu
,
T. R.
,
Yang
,
Z. J.
,
Wang
,
L. P.
,
Cheng
,
X. F.
,
Zhong
,
M. H.
, and
Shi
,
C. L.
,
2010
, “
Measurement Performance of Optical CCD-Based Pyrometer System
,”
Optics Laser Tech.
,
42
(
4
), pp.
586
593
.
17.
Fu
,
T. R.
,
Wang
,
Z.
, and
Cheng
,
X. F.
,
2010
, “
Temperature Measurements of a Diesel Fuel Combustion With Multicolor Pyrometry
,”
ASME J. Heat Transfer
,
132
(
5
), p.
051602
.
18.
Fu
,
T. R.
,
Tan
,
P.
,
Pang
,
C. H.
,
Zhao
,
H.
, and
Shen
,
Y.
,
2011
, “
Fast Fiber-Optic Multi-Wavelength Pyrometer
,”
Rev. Sci. Instrum.
,
82
(
6
), p.
064902
.
19.
Fu
,
T. R.
,
Liu
,
J. F.
,
Duan
,
M. H.
, and
Zong
,
A. Z.
,
2014
, “
Temperature Measurements Using Multicolor Pyrometry in Thermal Radiation Heating Environments
,”
Rev. Sci. Instrum.
,
85
(
4
), p.
044901
.
20.
Suarez
,
E.
, and
Przirembel
,
H. R.
,
1990
, “
Pyrometry for Turbine Blade Development
,”
J. Propul. Power
,
6
(
5
), pp.
584
589
.
21.
Kerr
,
C.
, and
Ivey
,
P.
,
2002
, “
An Overview of the Measurement Errors Associated With Gas Turbine Aeroengine Pyrometer Systems
,”
Meas. Sci. Technol.
,
13
(
6
), pp.
873
871
.
22.
Kerr
,
C.
, and
Ivey
,
P.
,
2004
, “
Optical Pyrometry for Gas Turbine Aeroengines
,”
Sens. Rev.
,
24
(
4
), pp.
378
386
.
23.
Willsch
,
M.
,
Bosselmann
,
T.
, and
Theune
,
N. M.
,
2004
, “
New Approaches for the Monitoring of Gas Turbine Blades and Vanes
,”
IEEE
Sensors Conference
, Oct. 24–27, pp.
20
23
.
24.
Horlock
,
J. H.
, and
Torbidoni
,
L.
,
2006
, “
Turbine Blade Cooling: the Blade Temperature Distribution
,”
Proc. Inst. Mech. Eng. A
,
220
(
4
), pp.
343
353
.
25.
Mori
,
M.
,
Novak
,
L.
, and
Sekavčnik
,
M.
,
2007
, “
Measurements on Rotating Blades Using IR Thermography
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
387
396
.
26.
Eggert
,
T.
,
Schenk
,
B.
, and
Pucher
,
H.
,
2002
, “
Development and Evaluation of a High-Resolution Turbine Pyrometer System
,”
ASME J. Turbomach.
,
124
(
3
), pp.
439
444
.
27.
Markham
,
J. R.
,
Latvakoski
,
H. M.
,
Frank
,
S. L. F.
, and
Lüdtke
,
M.
,
2002
, “
Simultaneous Short and Long Wavelength Infrared Pyrometer Measurements in a Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
528
533
.
28.
Rooth
,
R. A.
, and
Hiemstra
,
W.
,
2003
, “
Dual Wavelength Temperature Monitoring of TBC Coated Alstom 13E2 Turbine Blades
,”
ASME
Paper No. GT2003-38814.
29.
Taniguchi
,
T.
,
Sanbonsugi
,
K.
,
Ozaki
,
Y.
, and
Norimoto
,
A.
,
2006
, “
Temperature Measurement of High Speed Rotating Turbine Blades Using a Pyrometer
,”
ASME
Paper No. GT2006-90247.
30.
Taniguchi
,
T.
,
Tanaka
,
R.
,
Shinoda
,
Y.
,
Ryu
,
M.
,
Moritz
,
N.
, and
Kusterer
,
K.
,
2012
, “
Application of an Optical Pyrometer to Newly Developed Industrial Gas Turbine
,”
ASME
Paper No. GT2012-68679.
31.
Wang
,
G. H.
,
Estevadeordal
,
J.
, and
Nirmalan
,
N.
,
2013
, “
Real-Time Multi-Color Techniques for Identification and Filtering of Burst Signals in Jet Engine Pyrometers
,”
ASME
Paper No. FEDSM 2013-16623.
32.
Estevadeordal
,
J.
,
Wang
,
G. H.
,
Nirmalan
,
N.
,
Harper
,
S. P.
,
Wang
,
A. Q.
,
Lewandowski
,
B.
, and
Rigney
,
J. D.
,
2012
, “
Multi-Color Techniques for Identification and Filtering of Burst Signals in Jet Engine Pyrometers
,”
ASME
Paper No. GT2012-69614.
33.
Estevadeordal
,
J.
,
Wang
,
G. H.
,
Nirmalan
,
N.
,
Wang
,
A. Q.
,
Harper
,
S. P.
, and
Rigney
,
J. D.
,
2013
, “
Multicolor Techniques for Identification and Filtering of Burst Signals in Jet Engine Pyrometers
,”
ASME J. Turbomach.
,
136
(
3
), p.
031004
.
34.
Wang
,
G. H.
,
Estevadeordal
,
J.
,
Nirmalan
,
N.
, and
Harper
,
S. P.
,
2015
, “
Real-Time Burst Signal Removal Using Multicolor Pyrometry Based Filter for Improved Jet Engine Control
,”
ASME J. Turbomach.
,
137
(
8
), p.
081008
.
35.
Lucia
,
M.
, and
Lanfranchi
,
C.
,
1994
, “
An Infrared Pyrometry System for Monitoring Gas Turbine Blades: Development of a Computer Model and Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
172
177
.
36.
Gao
,
S.
,
Wang
,
L. X.
,
Feng
,
C.
,
Xiao
,
Y.
, and
Daniel
,
K.
,
2015
, “
Monitoring Temperature for Gas Turbine Blade: Correction of Reflection Model
,”
Opt. Eng.
,
54
(
6
), p.
065102
.
37.
Gao
,
S.
,
Wang
,
L. X.
,
Feng
,
C.
, and
Daniel
,
K.
,
2015
, “
Analysis and Improvement of Gas Turbine Blade Temperature Measurement Error
,”
Meas. Sci. Technol.
,
26
(
10
), p.
105203
.
38.
Almohammadi
,
K. M.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashan
,
M.
,
2013
, “
Computational Fluid Dynamics (CFD) Mesh Independency Techniques for a Straight Blade Vertical Axis Wind Turbine
,”
Energy
,
58
, pp.
483
493
.
39.
Mathew
,
S.
,
Ravelli
,
S.
, and
Bogard
,
D. G.
,
2013
, “
Evaluation of CFD Predictions Using Thermal Field Measurements on a Simulated Film Cooled Turbine Blade Leading Edge
,”
ASME J. Turbomach.
,
135
(
1
), p.
011021
.
40.
Xu
,
L.
, and
Luo
,
H.
,
2008
, “
The Technology of Numerical Simulation Based on ANSYS ICEM CFD and CFX Software
,”
Mech. Eng.
,
12
, p.
049
.
41.
Howell
,
J. R.
,
Siegel
,
R.
, and
Menguc
,
M. P.
,
2010
,
Thermal Radiation Heat Transfer
, 5th ed.,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.