A major challenge in maintaining quality and reliability in today's microelectronics chips comes from the ever increasing levels of integration in the device fabrication, as well as from the high current densities. Transient Joule heating in the on-chip interconnect metal lines with characteristic sizes of tens of nanometer, can lead to thermomechanical fatigue and failure due to the thermal expansion coefficient mismatch between different materials. Full-field simulations of nearly a billion interconnects in a modern microprocessor are infeasible due to the grid size requirements. To prevent premature device failures, a rapid predictive capability for the thermal response of on-chip interconnects is essential. This work develops a two-dimensional (2D) transient heat conduction framework to analyze inhomogeneous domains, using a reduced-order modeling approach based on proper orthogonal decomposition (POD) and Galerkin projection. POD modes are generated by using a representative step function as the heat source. The model rapidly predicted the transient thermal behavior of the system for several cases, without generating any new observations, and using just a few POD modes.

References

References
1.
Lloyd
,
J. R.
, and
Thompson
,
C. V.
,
1993
, “
Materials Reliability in Microelectronics
,”
MRS Bull.
,
18
(
12
), pp.
16
18
.
2.
Phan
,
T.
,
Dilhaire
,
S.
,
Quintard
,
V.
,
Lewis
,
D.
, and
Claeys
,
W.
,
1997
, “
Thermomechanical Study of AlCu Based Interconnect Under Pulsed Thermoelectric Excitation
,”
J. Appl. Phys.
,
81
(
3
), p.
1157
.
3.
Bilotti
,
A. A.
,
1974
, “
Static Temperature Distribution in IC Chips With Isothermal Heat Sources
,”
IEEE Trans. Electron Devices
,
21
(
3
), pp.
217
226
.
4.
Shen
,
Y. L.
,
1999
, “
Analysis of Joule Heating in Multilevel Interconnects
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
,
17
(
5
), pp.
2115
2121
.
5.
Teng
,
C. C.
,
Cheng
,
Y. K.
,
Rosenbaum
,
E.
, and
Kang
,
S. M.
,
2002
, “
Item: A Temperature-Dependent Electromigration Reliability Diagnosis Tool
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
16
(
8
), pp.
882
893
.
6.
Chen
,
D.
,
Li
,
E.
,
Rosenbaum
,
E.
, and
Kang
,
S. M.
,
2002
, “
Interconnect Thermal Modeling for Accurate Simulation of Circuit Timing and Reliability
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
19
(
2
), pp.
197
205
.
7.
Stan
,
M. R.
,
Skadron
,
K.
,
Barcella
,
M.
,
Wei
,
H.
,
Sankaranarayanan
,
K.
, and
Velusamy
,
S.
,
2003
, “
Hotspot: A Dynamic Compact Thermal Model at the Processor-Architecture Level
,”
Microelectron. J.
,
34
(
12
), pp.
1153
1165
.
8.
Gurrum
,
S. P.
,
Joshi
,
Y. K.
,
King
,
W. P.
,
Ramakrishna
,
K.
, and
Gall
,
M.
,
2008
, “
A Compact Approach to On-Chip Interconnect Heat Conduction Modeling Using the Finite Element Method
,”
ASME J. Electron. Packag.
,
130
(
3
), p.
031001
.
9.
Celo
,
D.
,
Ming
,
G. X.
,
Gunupudi
,
P. K.
,
Khazaka
,
R.
,
Walkey
,
D. J.
,
Smy
,
T.
, and
Nakhla
,
M. S.
,
2005
, “
Hierarchical Thermal Analysis of Large IC Modules
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
207
217
.
10.
Christopoulos
,
C.
,
2002
, “
The Transmission-Line Modeling Method: TLM
,”
IEEE Antennas Propag. Mag.
,
39
(
1
), p.
90
.
11.
De Cogan
,
D.
,
O'connor
,
W. J.
, and
Pulko
,
S.
,
2005
,
Transmission Line Matrix (TLM) in Computational Mechanics
,
CRC Press
, Boca Raton, FL.
12.
Barabadi
,
B.
,
Joshi
,
Y. K.
,
Kumar
,
S.
, and
Refai-Ahmed
,
G.
,
2010
, “
Thermal Characterization of Planar Interconnect Architectures Under Transient Currents
,”
ASME
Paper No. IMECE2009-11996.
13.
Barabadi
,
B.
,
Joshi
,
Y. K.
,
Kumar
,
S.
, and
Refai-Ahmed
,
G.
,
2010
, “
Thermal Characterization of Planar Interconnect Architectures Under Different Rapid Transient Currents Using the Transmission Line Matrix and Finite Element Methods
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, June 2–5, pp.
1
8
.
14.
Ait-Sadi
,
R.
, and
Naylor
,
P.
,
1993
, “
An Investigation of the Different TLM Configurations Used in the Modelling of Diffusion Problems
,”
Int. J. Numer. Modell.: Electron. Networks, Devices Fields
,
6
(
4
), pp.
253
268
.
15.
Smy
,
T.
,
Walkey
,
D.
, and
Dew
,
S.
,
2001
, “
Transient 3d Heat Flow Analysis for Integrated Circuit Devices Using the Transmission Line Matrix Method on a Quad Tree Mesh
,”
Solid-State Electron.
,
45
(
7
), pp.
1137
1148
.
16.
Antoulas
,
A.
,
Sorensen
,
D.
, and
Gugercin
,
S.
,
2001
, “
A Survey of Model Reduction Methods for Large-Scale Systems
,”
Contemp. Math.
,
280
(
2001
), pp.
193
220
.
17.
Glover
,
K.
,
1984
, “
All Optimal Hankel-Norm Approximations of Linear Multivariable Systems and Their L,∞-Error Bounds†
,”
Int. J. Control
,
39
(
6
), pp.
1115
1193
.
18.
Kokotovic
,
P. V.
,
1976
, “
Singular Perturbations and Order Reduction in Control Theory—An Overview
,”
Automatica
,
12
(
2
), pp.
123
132
.
19.
Pearson
,
K.
,
1901
, “
LIII on Lines and Planes of Closest Fit to Systems of Points in Space
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
2
(
11
), pp.
559
572
.
20.
Feldmann
,
P.
, and
Freund
,
R. W.
,
1995
, “
Efficient Linear Circuit Analysis by Padé Approximation Via the Lanczos Process
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
14
(
5
), pp.
639
649
.
21.
Grimme
,
E. J.
,
1997
, “
Krylov Projection Methods for Model Reduction
,”
Ph.D. thesis
, University of Illinois at Urbana-Champaign, Champaign, IL.
22.
Jaimoukha
,
I. M.
, and
Kasenally
,
E. M.
,
1997
, “
Implicitly Restarted Krylov Subspace Methods for Stable Partial Realizations
,”
SIAM J. Matrix Anal. Appl.
,
18
(
3
), pp.
633
652
.
23.
Tan
,
B. T.
,
2003
, “
Proper Orthogonal Decomposition Extensions and Their Applications in Steady Aerodynamics
,”
Ph.D. thesis
, Ho Chi Minh City University of Technology, Ho Chi Minh, Vietnam.
24.
Ahlman
,
D.
,
Jackson
,
J.
,
Kurdila
,
A.
, and
Shyy
,
W.
,
2002
, “
Proper Orthogonal Decomposition for Time-Dependent Lid-Driven Cavity Flows
,”
Numer. Heat Transfer, Part B
,
42
(
4
), pp.
285
306
.
25.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
26.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J.
,
1996
, “
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,”
Cambridge Monographs on Mechanics
,
Cambridge University Press
, New York, pp.
1200
1208
.
27.
Cusumano
,
J. P.
,
Sharkady
,
M. T.
, and
Kimble
,
B. W.
,
1994
, “
Experimental Measurements of Dimensionality and Spatial Coherence in the Dynamics of a Flexible-Beam Impact Oscillator
,”
Philos. Trans. R. Soc., A
,
347
(
1683
), pp.
421
438
.
28.
Feeny
,
B. F.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
(
4
), pp.
607
616
.
29.
Atwell
,
J. A.
, and
King
,
B. B.
,
2001
, “
Proper Orthogonal Decomposition for Reduced Basis Feedback Controllers for Parabolic Equations
,”
Math. Comput. Modell.
,
33
(
1–3
), pp.
1
19
.
30.
Liang
,
Y.
,
Lin
,
W.
,
Lee
,
H.
,
Lim
,
S.
,
Lee
,
K.
, and
Sun
,
H.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part II: Model Reduction for MEMS Dynamical Analysis
,”
J. Sound Vib.
,
256
(
3
), pp.
515
532
.
31.
Codecasa
,
L.
,
D'amore
,
D.
, and
Maffezzoni
,
P.
,
2003
, “
An Arnoldi Based Thermal Network Reduction Method for Electro-Thermal Analysis
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
186
192
.
32.
Bialecki
,
R.
,
Kassab
,
A.
, and
Fic
,
A.
,
2005
, “
Proper Orthogonal Decomposition and Modal Analysis for Acceleration of Transient FEM Thermal Analysis
,”
Int. J. Numer. Methods Eng.
,
62
(
6
), pp.
774
797
.
33.
Bialecki
,
R.
,
Kassab
,
A.
, and
Fic
,
A.
,
2003
, “
Reduction of the Dimensionality of Transient FEM Solutions Using Proper Orthogonal Decomposition
,”
AIAA
Paper No. 2003-4207.
34.
Fic
,
A.
,
Bialecki
,
R. A.
, and
Kassab
,
A. J.
,
2005
, “
Solving Transient Non-Linear Heat Conduction Problems by Proper Orthogonal Decomposition and FEM
,”
Numer. Heat Transfer, Part B
,
48
(
2
), pp.
103
124
.
35.
Bleris
,
L. G.
, and
Kothare
,
M. V.
,
2005
, “
Reduced Order Distributed Boundary Control of Thermal Transients in Microsystems
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
853
867
.
36.
Raghupathy
,
A. P.
,
Ghia
,
U.
,
Ghia
,
K.
, and
Maltz
,
W.
,
2010
, “
Boundary-Condition-Independent Reduced-Order Modeling of Heat Transfer in Complex Objects by POD-Galerkin Methodology: 1d Case Study
,”
ASME J. Heat Transfer
,
132
(
6
), p.
064502
.
37.
Jolliffe
,
I. T.
, and
Myilibrary
,
2005
,
Principal Component Analysis
,
Springer, New York
.
38.
Grossman
,
R. L.
, and
Kamath
,
C.
,
2001
,
Data Mining for Scientific and Engineering Applications
,
Kluwer Academic Publishers
,
Norwell, MA
.
39.
Kirby
,
M.
, and
Sirovich
,
L.
,
2002
, “
Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
12
(
1
), pp.
103
108
.
40.
Eriksson
,
P.
,
Jiménez
,
C.
,
Bühler
,
S.
, and
Murtagh
,
D.
,
2002
, “
A Hotelling Transformation Approach for Rapid Inversion of Atmospheric Spectra
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
6
), pp.
529
543
.
41.
Liang
,
Y.
,
Lee
,
H.
,
Lim
,
S.
,
Lin
,
W.
,
Lee
,
K.
, and
Wu
,
C.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.
42.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
1998
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
New York
.
43.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
.
44.
Rolander
,
N. W.
,
2005
, “
An Approach for the Robust Design of Data Center Server Cabinets
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.
45.
Bizon
,
K.
,
Continillo
,
G.
,
Russo
,
L.
, and
Smula
,
J.
,
2008
, “
On POD Reduced Models of Tubular Reactor With Periodic Regimes
,”
Comput. Chem. Eng.
,
32
(
6
), pp.
1305
1315
.
46.
Graham
,
M. D.
, and
Kevrekidis
,
I. G.
,
1996
, “
Alternative Approaches to the Karhunen-Loeve Decomposition for Model Reduction and Data Analysis
,”
Comput. Chem. Eng.
,
20
(
5
), pp.
495
506
.
47.
Rowley
,
C. W.
,
Colonius
,
T.
, and
Murray
,
R. M.
,
2001
, “
Dynamical Models for Control of Cavity Oscillations
,”
AIAA
Paper No. 2001-2126.
48.
Ding
,
P.
,
Wu
,
X. H.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2008
, “
A Fast and Efficient Method for Predicting Fluid Flow and Heat Transfer Problems
,”
ASME J. Heat Transfer
,
130
(
3
), p.
032502
.
49.
Ly
,
H. V.
, and
Tran
,
H. T.
,
2001
, “
Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition
,”
Math. Comput. Modell.
,
33
(
1
), pp.
223
236
.
50.
Rambo
,
J.
, and
Joshi
,
Y.
,
2007
, “
Reduced-Order Modeling of Turbulent Forced Convection With Parametric Conditions
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
539
551
.
51.
Rambo
,
J. D.
,
2006
, “
Reduced-Order Modeling of Multiscale Turbulent Convection: Application to Data Center Thermal Management
,”
Ph.D. thesis
, Geogia Institute of Technology, Atlanta, GA.
52.
Ostrowski
,
Z.
,
Białecki
,
R.
, and
Kassab
,
A.
,
2008
, “
Solving Inverse Heat Conduction Problems Using Trained POD-RBF Network Inverse Method
,”
Inverse Probl. Sci. Eng.
,
16
(
1
), pp.
39
54
.
53.
Ostrowski
,
Z.
,
Białecki
,
R. A.
, and
Kassab
,
A. J.
,
2005
, “
Estimation of Constant Thermal Conductivity by Use of Proper Orthogonal Decomposition
,”
Comput. Mech.
,
37
(
1
), pp.
52
59
.
54.
Temam
,
R.
,
1997
,
Infinite Dimensional Dynamical Systems in Mechanics and Physics
,
Springer
,
New York
.
55.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill Professional
,
New York
.
56.
Barabadi
,
B.
,
Joshi
,
Y.
, and
Kumar
,
S.
,
2011
, “
Prediction of Transient Thermal Behavior of Planar Interconnect Architecture Using Proper Orthogonal Decomposition Method
,”
ASME
Paper No. IPACK2011-52133.
You do not currently have access to this content.