Considerable recent research has focused on the ability of microstructured fibers to exhibit diverse optical functionalities. However, accurately preserving the structure imposed at the preform stage after drawing it down to fiber, while avoiding Rayleigh–Plateau style instabilities, has proven to be a major fabrication challenge. This modeling/analytical study was carried out in support of an experimental program into possible fabrication options for various microstructured optical fibers and considers the generic case of the nonisothermal drawing of a capillary preform to fiber. Model development was carried out in two stages. Initially, a fully conjugate multiphase model, which includes all heat transfer modes within an operational fiber drawing furnace, was validated against available experimental data. To evaluate the external radiative heat flux using the net-radiation method, a Monte Carlo ray-tracing (MC-RT) method was coupled to the commercial polyflow package to obtain all view factors between the various furnace walls and the deforming preform/fiber. A simplified model was also developed (to shorten simulation run times) by explicitly calculating the convective heat transfer between the air within the furnace and the preform/fiber surface using a heat transfer coefficient determined by matching predicted results with those obtained from the multiphase model.

References

References
1.
Kase
,
S.
, and
Matsuo
,
T. J.
,
1965
, “
Studies on Melt Spinning. I. Fundamental Equations on the Dynamics of Melt Spinning
,”
J. Polym. Sci., Part A: Gen. Pap.
,
3
(
7
), pp.
2541
2554
.
2.
Matovich
,
M. R.
, and
Pearson
,
J. R. A.
,
1969
, “
Spinning a Molten Threadline. Steady-State Isothermal Viscous Flows
,”
Ind. Eng. Chem. Fundam.
,
8
(
3
), pp.
512
520
.
3.
Geyling
,
F. T.
,
1976
, “
Basic Fluid-Dynamic Considerations in the Drawing of Optical Fibers
,”
Bell Syst. Tech. J.
,
55
(
8
), pp.
1011
1056
.
4.
Large
,
M.
,
Poladian
,
L.
,
Barton
,
G.
, and
van Eijkelenborg
,
M.
,
2008
,
Microstructured Polymer Optical Fibres
,
Springer
,
New York
.
5.
Tuniz
,
A.
,
Lwin
,
R.
,
Argyros
,
A.
,
Fleming
,
S. C.
, and
Kuhlmey
,
B. T.
,
2012
, “
Fabricating Metamaterials Using the Fiber Drawing Method
,”
JoVE
,
68
, p.
e4299
.
6.
Paek
,
U. C.
, and
Runk
,
R. B.
,
1978
, “
Physical Behavior of the Neck-Down Region During Furnace Drawing of Silica Fibres
,”
J. Appl. Phys.
,
49
(
8
), pp.
4417
4422
.
7.
Homsy
,
G. M.
, and
Walker
,
K.
,
1979
, “
Heat Transfer in Laser Drawing of Optical Fibres
,”
Glass Technol.
,
20
(
1
), pp.
20
26
.
8.
Lee
,
S. H.-K.
, and
Jaluria
,
Y.
,
1995
, “
The Effects of Geometry and Temperature Variations on the Radiative Transport During Optical Fibre Drawing
,”
J. Mater. Process. Manuf. Sci.
,
3
(
4
), pp.
317
331
.
9.
Lee
,
S. H.-K.
, and
Jaluria
,
Y.
,
1997
, “
Simulation of the Transport Processes in the Neck-Down Region of a Furnace Drawn Optical Fibre
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
843
856
.
10.
Choudhury
,
S. R.
, and
Jaluria
,
Y.
,
1998
, “
Thermal Transport due to Material and Gas Flow in a Furnace for Drawing an Optical Fiber
,”
J. Mater. Res.
,
13
(
2
), pp.
494
503
.
11.
Liu
,
J.
,
Zhang
,
S. J.
, and
Chen
,
Y. S.
,
2001
, “
Modeling of Radiative Transfer in Optical Fibre Drawing Processes With Fresnel Interfaces
,”
Numer. Heat Transfer, Part B
,
39
(
4
), pp.
345
370
.
12.
Liu
,
J.
,
Zhang
,
S. J.
, and
Chen
,
Y. S.
,
2001
, “
Advanced Simulation of Optical Fiber Drawing Process
,”
Numer. Heat Transfer, Part A
,
40
(
5
), pp.
473
495
.
13.
Xue
,
S. C.
,
Large
,
M. C. J.
,
Barton
,
G. W.
,
Tanner
,
R. I.
,
Poladian
,
L.
, and
Lwin
,
R.
,
2006
, “
The Role of Material Properties and Drawing Conditions in the Fabrication of Microstructured Optical Fibres
,”
J. Lightwave Technol.
,
24
(
2
), pp.
853
860
.
14.
Xue
,
S. C.
,
Barton
,
G. W.
,
Fleming
,
S.
, and
Argyros
,
A.
,
2017
, “
Analysis of Capillary Instability in Metamaterials Fabrication Using Fibre Drawing Technology
,”
J. Lightwave Technol.
(accepted).
15.
Choudhury
,
S. R.
, and
Jaluria
,
Y.
,
1999
, “
A Computational Method for Generating the Free-Surface Neck-Down Profile for Glass Flow in Optical Fibre Drawing
,”
Numer. Heat Transfer, Part A
,
35
(
1
), pp.
1
24
.
16.
Cheng
,
X.
, and
Jaluria
,
Y.
,
2002
, “
Effect of Draw Furnace Geometry on High-Speed Optical Fibre
,”
Numer. Heat Transfer, Part A
,
41
(
8
), pp.
757
781
.
17.
Lee
,
K. M.
,
Wei
,
Z.
,
Zhou
,
Z.
, and
Hong
,
S. P.
,
2006
, “
Computational Thermal Fluid Models for Design of a Modern Fiber Draw Process
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
1
), pp.
108
209
.
18.
Wei
,
Z.
,
Lee
,
K.-M.
,
Tchikanda
,
S. W.
,
Zhou
,
Z.
, and
Hong
,
S.-P.
,
2004
, “
Free Surface Flow in High Speed Fibre Drawing With Large-Diameter Glass Preform
,”
ASME J. Heat Transfer
,
126
(
5
), pp.
713
722
.
19.
Gupta
,
G.
, and
Schultz
,
W. W.
,
1998
, “
Non-Isothermal Flows of Newtonian Slender Glass Fibres
,”
Int. J. Non-Linear Mech.
,
33
(
1
), pp.
151
163
.
20.
Ramos
,
J. I.
,
2005
, “
Convection and Radiation Effects in Hollow, Compound Optical Fibres
,”
Int. J. Therm. Sci.
,
44
(
9
), pp.
832
850
.
21.
Xiao
,
Z.
, and
Kaminski
,
D. A.
,
1997
, “
Flow, Heat Transfer, and Free Surface Shape During the Optical Fiber Drawing Process
,”
National Heat Transfer Conference
, ASME, New York, Vol.
9
, pp.
219
229
.
22.
Reeve
,
H. M.
,
Mescher
,
A. M.
, and
Emery
,
A. F.
,
2004
, “
Investigation of Steady-State Drawing Force and Heat Transfer in Polymer Optical Fibre Manufacturing
,”
ASME J. Heat Transfer
,
126
(
2
), pp.
236
243
.
23.
Myers
,
M. R.
,
1989
, “
A Model for Unsteady Analysis of Preform Drawing
,”
AIChE J.
,
35
(
4
), pp.
592
602
.
24.
van Eijkelenborg
,
M. A.
,
Large
,
M. C. J.
,
Argyros
,
A.
,
Zagari
,
J.
,
Manos
,
S.
,
Issa
,
N. A.
,
Bassett
,
I.
,
Fleming
,
S.
,
McPhedran
,
R. C.
,
de Sterke
,
C. M.
, and
Nicorovici
,
N. A. P.
,
2001
, “
Microstructured Polymer Optical Fibre
,”
Opt. Exp.
,
9
(
7
), pp.
319
327
.
25.
Kaufman
,
J. J.
,
Tao
,
G.
,
Shabahang
,
S.
,
Banaei
,
E.-H.
,
Deng
,
D. S.
,
Liang
,
X.
,
Johnson
,
S. G.
,
Fink
,
Y.
, and
Abouraddy
,
A. F.
,
2012
, “
Structured Spheres Generated by an In-Fibre Fluid Instability
,”
Nature
,
487
(
7408
), pp.
463
467
.
26.
Freeman
,
B. D.
,
Denn
,
M. M.
,
Keunings
,
R.
,
Molau
,
G. E.
, and
Ramos
,
J.
,
1986
, “
Profile Development in Drawn Hollow Tubes
,”
J. Polym. Eng.
,
6
(
1–4
), pp.
171
186
.
27.
Fitt
,
A. D.
,
Furusawa
,
K.
,
Monro
,
T. M.
,
Please
,
C. P.
, and
Richardson
,
D. J.
,
2002
, “
The Mathematical Modelling of Capillary Drawing for Holey Fibre Manufacture
,”
J. Eng. Math.
,
43
(
2
), pp.
201
227
.
28.
Lyytikäinen
,
K.
,
Zagari
,
J.
,
Barton
,
G.
, and
Canning
,
J.
,
2004
, “
Heat Transfer Within a Microstructured Polymer Optical Fibre Preform
,”
Modell. Simul. Mater. Sci. Eng.
,
12
(
3
), pp.
S255
S265
.
29.
Pone
,
E.
,
Dubois
,
C.
,
Guo
,
N.
,
Lacroix
,
S.
, and
Skorobogatiy
,
M.
,
2006
, “
Newtonian and Non-Newtonian Models of the Hollow All-Polymer Bragg Fiber Drawing
,”
J. Lightwave Technol.
,
24
(
12
), pp.
4991
4999
.
30.
Wynne
,
R.
,
2006
, “
A Fabrication Process for Microstructure Optical Fibers
,”
J. Lightwave Technol.
,
24
(
11
), pp.
4304
4313
.
31.
Chen
,
C.
, and
Jaluria
,
Y.
,
2007
Numerical Simulation of Transport in Optical Fiber Drawing With Core-Cladding Structure
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
559
567
.
32.
Yang
,
J.
, and
Jaluria
,
Y.
,
2009
, “
Feasibility and Optimization of the Hollow Optical Fiber Drawing Process
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4108
4116
.
33.
Chakravarthy
,
S. S.
, and
Chiu
,
W. K.
,
2009
, “
Boundary Integral Method for the Evolution of Slender Viscous Fibres Containing Holes in the Cross-Section
,”
J. Fluid Mech.
,
621
, pp.
155
182
.
34.
Luzi
,
G.
,
Epple
,
P.
,
Scharrer
,
M.
,
Fujimoto
,
K.
,
Rauh
,
C.
, and
Delgado
,
A.
,
2011
, “
Comparison Between an Analytical Asymptotic Fiber Drawing Model With Full Navier–Stokes Solution Taking Into Account the Effects of Inner Pressure and Surface Tension
,”
J. Lightwave Technol.
,
29
(
11
), pp.
1638
1646
.
35.
Xue
,
S. C.
,
Tanner
,
R. I.
,
Barton
,
G. W.
,
Lwin
,
R.
,
Large
,
M. C. J.
, and
Poladian
,
L.
,
2005
, “
Fabrication of Microstructured Optical Fibres, Part I: Problem Formulation and Numerical Modelling of Transient Draw Process
,”
J. Lightwave Technol.
,
23
(
7
), pp.
2245
2254
.
36.
Xue
,
S. C.
,
Tanner
,
R. I.
,
Barton
,
G. W.
,
Lwin
,
R.
,
Large
,
M. C. J.
, and
Poladian
,
L.
,
2005
, “
Fabrication of Microstructured Optical Fibres, Part II: Numerical Modelling of Steady-State Draw Process
,”
J. Lightwave Technol.
,
23
(
7
), pp.
2255
2266
.
37.
Siegel
,
R.
, and
Howell
,
J. R.
,
1992
,
Thermal Radiation Heat Transfer
,
Hemisphere Publishing
,
Washington, DC
.
38.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
,
1972
,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
39.
Tadmor
,
Z.
, and
Gogos
,
G.
,
1979
,
Principles of Polymer Processing
,
Wiley
,
New York
.
40.
van Krevelen
,
D. W.
,
1990
,
Properties of Polymers. Their Estimation and Correlation With Chemical Structure
,
3rd ed.
,
Elsevier Scientific Publishing
,
Amsterdam, The Netherlands
.
41.
Bu
,
H. S.
,
Aycock
,
W.
, and
Wunderlich
,
B.
,
1987
, “
Heat Capacities of Solid, Branched Macromolecules
,”
Polymers
,
28
(
7
), pp.
1165
1176
.
42.
ANSYS
,
2010
, “
ANSYS Polyflow User's Guide
,” ANSYS, Inc., Canonsburg, PA.
43.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
Hoboken, NJ
.
44.
Walker
,
T.
,
Xue
,
S.-C.
, and
Barton
,
G. W.
,
2010
, “
Numerical Determination of Radiative View Factors Using Ray Tracing
,”
ASME J. Heat Transfer
,
132
(
7
), p.
072702
.
45.
Walker
,
T.
,
Xue
,
S.-C.
, and
Barton
,
G. W.
,
2012
, “
A Robust Monte Carlo Based Ray-Tracing Approach for the Calculation of View Factors in Arbitrary Three-Dimensional Geometries
,”
Comput. Therm. Sci.
,
4
(
5
), pp.
425
442
.
46.
Xue
,
S. C.
,
Poladian
,
L.
,
Barton
,
G. W.
, and
Large
,
M. C. J.
,
2006
, “
Radiative Heat Transfer in Preforms for Microstructured Optical Fibres
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1569
1579
.
47.
Xue
,
S. C.
,
Lwin
,
R.
,
Barton
,
G. W.
,
Poladian
,
L.
, and
Large
,
M. C. J.
,
2007
, “
Transient Heating of PMMA Preforms for Microstructured Optical Fibres
,”
J. Lightwave Technol.
,
25
(
5
), pp.
1177
1183
.
48.
Sayles
,
R.
, and
Caswell
,
B.
,
1984
, “
A Finite Element Analysis of the Upper Jet Region of a Fiber Drawing Flow Field of a Temperature-Sensitive Material
,”
Int. J. Heat Mass transfer
,
27
(
1
), pp.
57
67
.
49.
Vasilijev
,
V. N.
,
Dulnev
,
G. N.
, and
Naumchic
,
V. D.
,
1989
, “
The Flow of a Highly Viscous Liquid With a Free Surface
,”
Glass Technol.
,
30
(
2
), pp.
83
90
.
50.
Patel
,
R. M.
,
Bheda
,
J. H.
, and
Spruiell
,
J. E.
,
1991
, “
Dynamics and Structure Development During High-Speed Melt Spinning of Nylon 6. II. Mathematical Modelling
,”
J. Appl. Polym. Sci.
,
42
(
6
), pp.
1671
1682
.
You do not currently have access to this content.