The Chilton–Colburn analogy is very helpful for evaluating the heat transfer in internal forced flows. The Chilton–Colburn analogy between the Chilton–Colburn j-factor for heat transfer, jH (St·Pr2/3) and the Fanning friction factor (cf) is popularly considered to hold when St·Pr2/3 equals to cf/2, for constant fluid properties. The physical fluid properties, namely, viscosity and thermal conductivity, are generally a function of temperature for microconvective water flow due to a quite steep temperature gradient. Therefore, in present investigation, the validity of Chilton–Colburn analogy between St·Pr2/3 and cf is re-examined for laminar microconvective flow with variable thermophysical fluid properties. It is observed that the Chilton–Colburn analogy is valid only for that portion of the flow regime, where St·Pr2/3 decreases with decreasing cf. The validity of Chilton–Colburn analogy is also verified by the inverse dependence of Reynolds number (Re) with cf. Two modified nondimensional parameters “Π and ΠSk” are emerged from the nondimensional form of 2D, steady-state, incompressible, pure continuum-based, laminar conservation of momentum and energy equations, respectively. These modified nondimensional parameters show the significance of variable fluid properties in momentum transport and energy transport. Additionally, the role of Π and ΠSk in flow friction is also investigated. The higher values of Π and ΠSk indicate the stronger influence on microconvection due to large variations in fluid properties.

References

References
1.
Sieder
,
E. N.
, and
Tate
,
G. E.
,
1936
, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
,
28
(
12
), pp.
1429
1435
.
2.
Herwig
,
H.
,
1985
, “
The Effect of Variable Properties on Momentum and Heat Transfer in a Tube With Constant Heat Flux Across the Wall
,”
Int. J. Heat Mass Transfer
,
28
(
2
), pp.
423
431
.
3.
Herwig
,
H.
,
Voigt
,
M.
, and
Bauhaus
,
F.-J.
,
1989
, “
The Effect of Variable Properties on Momentum and Heat Transfer in a Tube With Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
32
(
10
), pp.
1907
1915
.
4.
Herwig
,
H.
, and
Klemp
,
K.
,
1988
, “
Variable Property Effects of Fully Developed Laminar Flow in Concentric Annuli
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
314
320
.
5.
Etemad
,
S. G.
, and
Mujumdar
,
A.
,
1995
, “
Effects of Variable Viscosity and Viscous Dissipation on Laminar Convection Heat Transfer of a Power Law Fluid in the Entrance Region of a Semi-Circular Duct
,”
Int. J. Heat Mass Transfer
,
38
(
12
), pp.
2225
2238
.
6.
Harms
,
T.
,
Jog
,
M.
, and
Manglik
,
R.
,
1998
, “
Effects of Temperature-Dependent Viscosity Variations and Boundary Conditions on Fully Developed Laminar Forced Convection in a Semicircular Duct
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
600
605
.
7.
Kakac
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
,
1987
,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
.
8.
Webb
,
R.
, and
Bergles
,
A.
,
1982
, “
Performance Evaluation Criteria for Selection of Heat Transfer Surface Geometries Used in Low Reynolds Number Heat Exchangers
,”
Low Reynolds Number Flow Heat Exchangers
,
Hemisphere
,
Washington, DC
, pp.
735
752
.
9.
Liu
,
D.
, and
Lee
,
P.-S.
,
2003
, “
Numerical Investigation of Fluid Flow and Heat Transfer in Microchannel Heat Sinks
,” ME 605: In Convection of Heat and Mass, ASME, West Lafayette, IN.
10.
Andrade
,
C. R.
, and
Zaparoli
,
E. L.
,
2001
, “
Effects of Temperature-Dependent Viscosity on Fully Developed Laminar Forced Convection in a Curved Duct
,”
Int. Commun. Heat Mass Transfer
,
28
(
2
), pp.
211
220
.
11.
Mahulikar
,
S. P.
,
Herwig
,
H.
,
Hausner
,
O.
, and
Kock
,
F.
,
2004
, “
Laminar Gas Micro-Flow Convection Characteristics Due to Steep Density Gradients
,”
Europhys. Lett.
,
68
(
6
), pp.
811
817
.
12.
Mahulikar
,
S. P.
, and
Herwig
,
H.
,
2005
, “
Theoretical Investigation of Scaling Effects From Macro-to-Microscale Convection Due to Variations in Incompressible Fluid Properties
,”
Appl. Phys. Lett.
,
86
(
1
), pp.
1
3
.
13.
Mahulikar
,
S. P.
, and
Herwig
,
H.
,
2006
, “
Physical Effects in Laminar Microconvection Due to Variations in Incompressible Fluid Properties
,”
Phys. Fluids
,
18
(
7
), pp.
1
12
.
14.
Mahulikar
,
S. P.
, and
Herwig
,
H.
,
2006
, “
Physical Effects in Pure Continuum-Based Laminar Micro-Convection Due to Variation of Gas Properties
,”
J. Phys. D: Appl. Phys.
,
39
(
18
), pp.
4116
4123
.
15.
Harley
,
J. C.
,
Huang
,
Y.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
,
1995
, “
Gas Flow in Micro-Channels
,”
J. Fluid Mech.
,
284
, pp.
257
274
.
16.
Toh
,
K. C.
,
Chen
,
X. Y.
, and
Chai
,
J. C.
,
2002
, “
Numerical Computation of Fluid Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
26
), pp.
5133
5141
.
17.
Nonino
,
C.
,
Del Giudice
,
S.
, and
Savino
,
S.
,
2006
, “
Temperature Dependent Viscosity Effects on Laminar Forced Convection in the Entrance Region of Straight Ducts
,”
Int. J. Heat Mass Transfer
,
49
(
23
), pp.
4469
4481
.
18.
Herwig
,
H.
, and
Mahulikar
,
S. P.
,
2006
, “
Variable Property Effects in Single-Phase Incompressible Flows Through Microchannels
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
977
981
.
19.
Mahulikar
,
S. P.
,
Herwig
,
H.
, and
Hausner
,
O.
,
2007
, “
Study of Gas Microconvection for Synthesis of Rarefaction and Nonrarefaction Effects
,”
J. Microelectromech. Syst.
,
16
(
6
), pp.
1543
1556
.
20.
Mahulikar
,
S. P.
, and
Herwig
,
H.
,
2008
, “
Fluid Friction in Incompressible Laminar Convection: Reynolds' Analogy Revisited for Variable Fluid Properties
,”
Eur. Phys. J. B
,
62
(
1
), pp.
77
86
.
21.
Liu
,
J. T.
,
Peng
,
X. F.
, and
Wang
,
B. X.
,
2008
, “
Variable-Property Effect on Liquid Flow and Heat Transfer in Microchannels
,”
Chem. Eng. J.
,
141
(
1
), pp.
346
353
.
22.
Gulhane
,
N. P.
, and
Mahulikar
,
S. P.
,
2010
, “
Numerical Study of Compressible Convective Heat Transfer With Variations in all Fluid Properties
,”
Int. J. Therm. Sci.
,
49
(
5
), pp.
786
796
.
23.
Gulhane
,
N. P.
, and
Mahulikar
,
S. P.
,
2011
, “
Numerical Study of Microconvective Water-Flow Characteristics With Variations in Properties
,”
Nanoscale Microscale Thermophys. Eng.
,
15
(
1
), pp.
28
47
.
24.
Gulhane
,
N. P.
, and
Mahulikar
,
S. P.
,
2012
, “
Numerical Investigation on Laminar Microconvective Liquid Flow With Entrance Effect and Graetz Problem Due to Variation in Thermal Properties
,”
Heat Transfer Eng.
,
33
(
8
), pp.
748
761
.
25.
Kumar
,
R.
, and
Mahulikar
,
S. P.
,
2015
, “
Effect of Temperature-Dependent Viscosity Variation on Fully Developed Laminar Microconvective Flow
,”
Int. J. Therm. Sci.
,
98
, pp.
179
191
.
26.
Kumar
,
R.
, and
Mahulikar
,
S. P.
,
2015
, “
Frictional Flow Characteristics of Microconvective Flow for Variable Fluid Properties
,”
Fluid Dyn. Res.
,
47
(
6
), p. 065501.
27.
Colburn
,
A. P.
,
1964
, “
A Method of Correlating Forced Convection Heat-Transfer Data and a Comparison With Fluid Friction
,”
Int. J. Heat Mass Transfer
,
7
(
12
), pp.
1359
1384
.
28.
Hauke
,
G.
, and
Moreau
,
R.
,
2008
,
An Introduction to Fluid Mechanics and Transport Phenomena
,
Springer
,
The Netherlands
.
29.
Welty
,
J. R.
,
Wicks
,
C. E.
,
Rorrer
,
G.
, and
Wilson
,
R. E.
,
2008
,
Fundamentals of Momentum, Heat, and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
30.
Holman
,
J. P.
,
1990
,
Heat Transfer
,
7th ed.
,
McGraw Hill
,
San Francisco, CA
.
31.
Sherman
,
F. S.
,
1990
,
Viscous Flow
,
McGraw-Hill
,
New York
.
32.
Mahulikar
,
S. P.
, and
Tso
,
C. P.
,
2002
, “
A New Classification for Thermal Development of Fluid Flow in a Circular Tube Under Laminar Forced Convection
,”
Proc. R. Soc. London A
,
458
(
2019
), pp.
669
682
.
You do not currently have access to this content.