This paper presents a new approach of meshless local B-spline based finite difference (FD) method for transient 2D heat conduction problems with nonhomogenous and time-dependent heat sources. In this method, any governing equations are discretized by B-spline approximation which is implemented as a generalized FD technique using local B-spline collocation scheme. The key aspect of the method is that any derivative is stated as neighboring nodal values based on B-spline interpolants. The set of neighboring nodes is allowed to be randomly distributed. This allows enhanced flexibility to be obtained in the simulation. The method is truly meshless as no mesh connectivity is required for field variable approximation or integration. Galerkin implicit scheme is employed for time integration. Several transient 2D heat conduction problems with nonuniform heat sources in arbitrary complex geometries are examined to show the efficacy of the method. Comparison of the simulation results with solutions from other numerical methods in the literature is given. Good agreement with reference numerical methods is obtained. The method is shown to be simple and accurate for the time-dependent problems.

References

References
1.
Griebel
,
M.
, and
Schweitzer
,
M. A.
,
2000
, “
A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs
,”
SIAM J. Sci. Comput.
,
22
(
3
), pp.
853
890
.
2.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.
3.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
, pp.
1013
1024
.
4.
Nayroles
,
B.
,
Touzot
,
G.
, and
Villon
,
P.
,
1992
, “
Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements
,”
Comput. Mech.
,
10
(
5
), pp.
307
318
.
5.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
,
1994
, “
Element-Free Galerkin Method
,”
Int. J. Numer. Methods Eng.
,
37
(
2
), pp.
229
256
.
6.
Liu
,
W. K.
,
Jun
,
S.
, and
Zhang
,
Y. F.
,
1995
, “
Reproducing Kernel Particle Methods
,”
Int. J. Numer. Methods Fluids
,
20
(
8–9
), pp.
1081
1106
.
7.
Atluri
,
S. N.
, and
Zhu
,
T.
,
1998
, “
A New Meshless Local Petrov–Galerkin (MLPG) Approach in Computational Mechanics
,”
Comput. Mech.
,
22
(
2
), pp.
117
127
.
8.
Wang
,
H.
,
Qin
,
Q. H.
, and
Kang
,
Y. L.
,
2006
, “
A Meshless Model for Transient Heat Conduction in Functionally Graded Materials
,”
Comput. Mech.
,
38
(
1
), pp.
51
60
.
9.
Wu
,
X. H.
,
Shen
,
S. P.
, and
Tao
,
W. Q.
,
2007
, “
Meshless Local Petrov–Galerkin Collocation Method for Two-Dimensional Heat Conduction Problems
,”
CMES
,
22
(
1
), pp.
65
76
.
10.
Vishwakarma
,
V.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2011
, “
Steady State Conduction Through 2D Irregular Bodies by Smoothed Particle Hydrodynamics
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
314
325
.
11.
Soleimani
,
S.
,
Jalaal
,
M.
,
Bararnia
,
H.
,
Ghasemi
,
E.
,
Ganji
,
D. D.
, and
Mohammadi
,
F.
,
2010
, “
Local RBF-DQ Method for Two-Dimensional Transient Heat Conduction Problem
,”
Int. Commun. Heat Mass Transfer
,
37
(
9
), pp.
1411
1418
.
12.
Chen
,
L.
, and
Liew
,
K. M.
,
2011
, “
A Local Petrov–Galerkin Approach With Moving Kriging Interpolation for Solving Transient Heat Conduction Problems
,”
Comput. Mech.
,
47
(
4
), pp.
455
467
.
13.
Li
,
Q. H.
,
Chen
,
S. S.
, and
Kou
,
G. X.
,
2011
, “
Transient Heat Conduction Analysis Using the MLPG Method and Modified Precise Time Step Integration Method
,”
J. Comput. Phys.
,
230
(
7
), pp.
2736
2750
.
14.
Varanasi
,
C.
,
Murthy
,
J. Y.
, and
Mathur
,
S.
,
2010
, “
A Meshless Finite Difference Method for Conjugate Heat Conduction Problems
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081303
.
15.
Pepper
,
D. W.
,
Wang
,
X.
, and
Carrington
,
D. B.
,
2013
, “
A Meshless Method for Modelling Convective Heat Transfer
,”
ASME J. Heat Transfer
,
135
(
1
), p.
011003
.
16.
Divo
,
E.
, and
Kassab
,
A. J.
,
2007
, “
An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
124
136
.
17.
Singh
,
A.
,
Singh
,
I. V.
, and
Prakash
,
R.
,
2007
, “
Meshless Element Free Galerkin Method for Unsteady Nonlinear Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1212
1219
.
18.
Chantasiriwan
,
S.
,
2007
, “
Multiquadric Collocation Method for Time-Dependent Heat Conduction Problems With Temperature-Dependent Thermal Properties
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
109
113
.
19.
Sladek
,
J.
,
Sladek
,
V.
,
Tan
,
C. L.
, and
Atluri
,
S. N.
,
2008
, “
Analysis of Transient Heat Conduction in 3D Anisotropic Functionally Graded Solids, by the MLPG Method
,”
CMES
,
32
(
3
), pp.
161
174
.
20.
Vishwakarma
,
V.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2011
, “
Analysis of Non-Fourier Heat Conduction Using Smoothed Particle Hydrodynamics
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2963
2970
.
21.
Sikarudi
,
M. A. E.
, and
Nikseresht
,
A. H.
,
2016
, “
Neumann and Robin Boundary Conditions for Heat Conduction Modeling Using Smoothed Particle Hydrodynamics
,”
Comput. Phys. Commun.
,
198
, pp.
1
11
.
22.
Zhang
,
X.
,
Zhang
,
P.
, and
Zhang
,
L.
,
2013
, “
An Improved Meshless Method With Almost Interpolation Property for Isotropic Heat Conduction Problems
,”
Eng. Anal. Boundary Elem.
,
37
(
5
), pp.
850
859
.
23.
Hidayat
,
M. I. P.
,
Wahjoedi
,
B. A.
,
Parman
,
S.
, and
Yusoff
,
P. S. M. M.
,
2014
, “
Meshless Local B-Spline-FD Method and Its Application for 2D Heat Conduction Problems With Spatially Varying Thermal Conductivity
,”
Appl. Math. Comput.
,
242
, pp.
236
254
.
24.
Sun
,
Y. S.
, and
Li
,
B. W.
,
2010
, “
Spectral Collocation Method for Transient Combined Radiation and Conduction in an Anisotropic Scattering Slab With Graded Index
,”
ASME J. Heat Transfer
,
132
(
5
), p.
052701
.
25.
Ma
,
J.
,
Sun
,
Y. S.
, and
Li
,
B. W.
,
2014
, “
Completely Spectral Collocation Solution of Radiative Heat Transfer in an Anisotropic Scattering Slab With a Graded Index Medium
,”
ASME J. Heat Transfer
,
136
(
1
), p.
012701
.
26.
Liu
,
G. R.
,
2009
,
Meshfree Methods: Moving Beyond the Finite Element Method
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
27.
Bornemann
,
P. B.
, and
Cirak
,
F.
,
2013
, “
A Subdivision-Based Implementation of the Hierarchical b-Spline Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
253
, pp.
584
598
.
28.
Kansa
,
E. J.
,
1990
, “
Multiquadric—A Scattered Data Approximation Scheme With Applications to Computational Fluid Dynamics II
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
147
161
.
29.
Cooper
,
K. D.
,
1993
, “
Domain-Imbedding Alternating Direction Method for Linear Elliptic Equations on Irregular Regions Using Collocation
,”
Numer. Methods Partial Differ. Equations
,
9
(
1
), pp.
93
106
.
30.
Sun
,
W. W.
,
Wu
,
J. M.
, and
Zhang
,
X. P.
,
2007
, “
Nonconforming Spline Collocation Methods in Irregular Domains
,”
Numer. Methods Partial Differ. Equations
,
23
(
6
), pp.
1509
1529
.
31.
Kundu
,
B.
, and
Das
,
P. K.
,
2005
, “
Optimum Profile of Thin Fins With Volumetric Heat Generation: A Unified Approach
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
945
948
.
32.
Bartels
,
R. H.
,
Beatty
,
J. C.
, and
Barsky
,
B. A.
,
1987
,
An Introduction to Splines for Use in Computer Graphics and Geometric Modeling
,
Morgan Kaufmann Publishers
,
San Mateo, CA
.
33.
de Boor
,
C.
,
1972
, “
On Calculating With B-Splines
,”
J. Approximation Theory
,
6
(
1
), pp.
50
62
.
34.
Cox
,
M.
,
1972
, “
The Numerical Evaluation of B-Spline
,”
J. Inst. Math. Appl.
,
10
(
2
), pp.
134
149
.
35.
de Boor
,
C.
,
2001
,
A Practical Guide to Splines
,
Revised ed.
,
Springer
,
New York
.
36.
Thakur
,
H.
,
Singh
,
K. M.
, and
Sahoo
,
P. K.
,
2010
, “
Meshless Local Petrov–Galerkin Method for Nonlinear Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
,
56
(5), pp.
393
410
.
37.
Hematiyan
,
M. R.
,
Mohammadi
,
M.
,
Marin
,
L.
, and
Khosravifard
,
A.
,
2011
, “
Boundary Element Analysis of Uncoupled Transient Thermo-Elastic Problems With Time- and Space-Dependent Heat Sources
,”
Appl. Math. Comput.
,
218
(
5
), pp.
1862
1882
.
38.
Mohammadi
,
M.
,
Hematiyan
,
M. R.
, and
Marin
,
L.
,
2010
, “
Boundary Element Analysis of Nonlinear Transient Heat Conduction Problems Involving Non-Homogenous and Nonlinear Heat Sources Using Time-Dependent Fundamental Solutions
,”
Eng. Anal. Boundary Elem.
,
34
(
7
), pp.
655
665
.
39.
Touloukian
,
Y. S.
,
1976
,
Thermophysical Properties of High Temperature Solid Materials
,
Macmillan
,
New York
.
40.
Khosravifard
,
A.
,
Hematiyan
,
M. R.
, and
Marin
,
L.
,
2011
, “
Nonlinear Transient Heat Conduction Analysis of Functionally Graded Materials in the Presence of Heat Sources Using an Improved Meshless Radial Point Interpolation Method
,”
Appl. Math. Modell.
,
35
(
9
), pp.
4157
4174
.
41.
Shu
,
C.
,
Ding
,
H.
, and
Yeo
,
K. S.
,
2003
, “
Local Radial Basis Function-Based Differential Quadrature Method and Its Application to Solve Two Dimensional Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
7–8
), pp.
941
954
.
42.
Shan
,
Y. Y.
,
Shu
,
C.
, and
Qin
,
N.
,
2009
, “
Multiquadric Finite Difference (MQ-FD) Method and Its Application
,”
Adv. Appl. Math. Mech.
,
1
(
5
), pp.
615
638
.
43.
Hidayat
,
M. I. P.
,
Ariwahjoedi
,
B.
, and
Parman
,
S.
,
2015
, “
A New Meshless Local B-Spline Basis Functions-FD Method for Two-Dimensional Heat Conduction Problems
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
2
), pp.
225
251
.
44.
Sarra
,
S. A.
,
2006
, “
Integrated Multiquadric Radial Basis Function Approximation Methods
,”
Comput. Math. Appl.
,
51
(
8
), pp.
1283
1296
.
45.
Hidayat
,
M. I. P.
,
Ariwahjoedi
,
B.
, and
Parman
,
S.
,
2015
, “
B-Spline Collocation With Domain Decomposition Method and Its Application for Singularly Perturbed Convection-Diffusion Problems
,”
Recent Trends in Physics of Material Science and Technology
,
F. L.
Gaol
,
K.
Shrivastava
, and
J.
Akhtar
, eds.,
Springer
,
Berlin
.
You do not currently have access to this content.