The paper introduces a novel two-phase heat transfer device (TPHTD) which is employed in the thermal management of light emitting diodes (LEDs). The heat transfer device structurally resembles a conventional loop heat pipe (LHP) without a compensation chamber, but operates very differently from it. The device is comprised of a central evaporator package and a circular coil that acts as a heat exchanger loop. The working fluid leaving the evaporator has a two-phase mixture quality of approximately 0.2. Having introduced the device, the paper delineates a mathematical model for predicting its thermal performance. The primary objective of the model is to provide a fundamental understanding of the operation of the device. A one-dimensional thermal resistance model (TRM) is utilized in modeling the evaporator. The paper presents a detailed discussion on obtaining these resistances from experiments conducted on the device. A correlation for the external heat transfer coefficient of the heat exchanger loop is proposed based on experiments and is found to be in good agreement with literature. The model predicts performance parameters such as board temperature, two-phase mixture quality, and saturation and subcooled temperatures (Tsat and Tsc) of the working fluid for different input thermal powers (Qtot). Based on experimental evidence, it is concluded that the majority of Qtot (∼75%) is utilized in phase change of the working fluid, and the rest reheats the working fluid from a lower subcooled temperature (Tsc) to the saturation temperature (Tsat) of the evaporator.

References

References
1.
Bogue
,
R.
,
2013
, “
Recent Developments in MEMS Sensors: A Review of Applications, Markets and Technologies
,”
Sens. Rev.
,
33
(
4
), pp.
300
304
.
2.
Lim
,
S. R.
,
Kang
,
D.
,
Ogunseitan
,
O. A.
, and
Schoenung
,
J. M.
,
2013
, “
Potential Environmental Impacts From the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED) Bulbs
,”
Environ. Sci. Technol.
,
47
(
2
), pp.
1040
1047
.
3.
Yeh
,
L. T.
,
1995
, “
Review of Heat Transfer Technologies in Electronic Equipment
,”
ASME J. Electron. Packag.
,
117
(
4
), pp.
333
339
.
4.
Pal
,
A.
,
Joshi
,
Y. K.
,
Beitelmal
,
M. H.
,
Patel
,
C. D.
, and
Wenger
,
T. M.
,
2002
, “
Design and Performance Evaluation of a Compact Thermosyphon
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
601
607
.
5.
Zimbeck
,
W.
,
Slavik
,
G.
,
Cennamo
,
J.
,
Kang
,
S.
,
Yun
,
J.
, and
Kroliczek
,
E.
,
2008
, “
Loop Heat Pipe Technology for Cooling Computer Servers
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, ITHERM, pp.
19
25
.
6.
Pastukhov
,
V. G.
, and
Maydanik
,
Y. F.
,
2009
, “
Active Coolers Based on Copper-Water LHPs for Desktop PC
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
3140
3143
.
7.
Ku
,
J.
,
1999
, “
Operating Characteristics of Loop Heat Pipes
,”
SAE
Technical Paper No. 1999-01-2007.
8.
Maydanik
,
Y. F.
,
2005
, “
Loop Heat Pipes
,”
Appl. Therm. Eng.
,
25
(
5–6
), pp.
635
657
.
9.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
,
Korukov
,
M. A.
, and
Ochterbeck
,
J. M.
,
2005
, “
Miniature Loop Heat Pipes—A Promising Means for Cooling Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
290
296
.
10.
Launay
,
S.
,
Sartre
,
V.
, and
Bonjour
,
J.
,
2007
, “
Parametric Analysis of Loop Heat Pipe Operation: A Literature Review
,”
Int. J. Therm. Sci.
,
46
(
7
), pp.
621
636
.
11.
Faghri
,
A.
, and
Chen
,
M.-M.
,
1989
, “
A Numerical Analysis of the Effects of Conjugate Heat Transfer, Vapor Compressibility, and Viscous Dissipation in Heat Pipes
,”
Numer. Heat Transfer, Part A
,
16
(
3
), pp.
389
405
.
12.
Kaya
,
T.
, and
Goldak
,
J.
,
2006
, “
Numerical Analysis of Heat and Mass Transfer in the Capillary Structure of a Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3211
3220
.
13.
Hamdan
,
M.
, and
Elnajjar
,
E.
,
2009
, “
Loop Heat Pipe: Simple Thermodynamic
,”
Int. J. Mech. Aerosp. Ind. Mech. Manuf. Eng.
,
3
(
4
), pp.
367
373
.
14.
Hamdan
,
M.
,
Cytrynowicz
,
D.
,
Medis
,
P.
,
Shuja
,
A.
,
Gerner
,
F. M.
,
Henderson
,
H. T.
,
Golliher
,
E.
,
Mellott
,
K.
, and
Moore
,
C.
,
2002
, “
Loop Heat Pipe (LHP) Development by Utilizing Coherent Porous Silicon (CPS) Wicks
,”
8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, ITHERM 2002, pp.
457
465
.
15.
Remella
,
K. S.
,
Gerner
,
F. M.
,
Shuja
,
A.
, and
Medis
,
P.
,
2012
, “
Steady State Numerical Modeling of Non-Conventional Loop Heat Pipes (LHPs)
,”
ASME
Paper No. IMECE2012-88217.
16.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
8
16
.
17.
Gorenflo
,
D.
,
1993
, “VDI Heat Atlas,” Springer, Berlin.
18.
Tsubouchi
,
T.
, and
Masud
,
H.
,
1970
, “
Natural Convection Heat Transfer From Horizontal Cylinders With Circular Fins
,”
4th International Heat Transfer Conference
, Paris, France, Aug. 31–Sept. 5.
19.
Knudsen
,
J. G.
, and
Pan
,
R. B.
,
1963
, “
Natural Convection Heat Transfer From Transverse Finned Tubes
,”
Chem. Eng. Prog.
,
59
(
7
), pp.
45
50
.
20.
Kayansayan
,
N.
,
1993
, “
Thermal Characteristics of Natural Convection Cooled Fin-Tube Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
7
(
2
), p.
131
.
21.
Hahne
,
E.
, and
Zhu
,
D.
,
1994
, “
Natural Convection Heat Transfer on Finned Tube in Air
,”
Int. J. Heat Mass Transfer
,
37
(
93
), pp.
59
63
.
22.
Tien
,
C. L.
, and
Chung
,
K. S.
,
1979
, “
Entrainment Limits in Heat Pipes
,”
AIAA J.
,
17
(
6
), pp.
643
646
.
23.
Nguyen-Chi
,
H.
, and
Groll
,
M.
,
1981
, “
Entrainment or Flooding Limit in a Closed Two-Phase Thermosyphon
,”
J. Heat Recovery Syst.
,
1
(
4
), pp.
275
286
.
24.
Hasegawa
,
S.
,
Echigo
,
R.
, and
Irie
,
S.
,
1975
, “
Boiling Characteristics and Burnout Phenomena on Heating Surface Covered With Woven Screens
,”
J. Nucl. Sci. Technol.
,
12
(
11
), pp.
722
724
.
25.
Zivi
,
S. M.
,
1964
, “
Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
247
251
.
26.
Rice
,
C. K.
,
1987
, “
Effect of Void Fraction Correlation and Heat Flux Assumption on Refrigerant Charge Inventory Predictions
,”
ASHRAE Trans.
,
93
(
Pt. 1
), pp.
341
367
.
You do not currently have access to this content.