Desiccant-coated energy wheels are rotary-air-to-air energy exchangers widely used in ventilation systems to reduce the energy consumption required in industrial environments and commercial buildings. In this study, the effects of silica gel microphysical properties, i.e., pore width (Pw), specific surface area (SA), and particle size (dp), on the moisture recovery efficiency (latent effectiveness) of energy wheels are investigated. Three silica gel samples with different particle size and pore width (55 μm–77 Å, 150 μm–63 Å, and 160 μm–115 Å) are selected to coat small-scale energy exchangers. The sorption performance of the exchangers is determined from their normalized humidity response to a step increase in the inlet humidity at different flow rates. The results demonstrate that the transient humidity response is mainly specified by the desiccant pore size distribution, specific surface area, and mass of the coating. The transient analytical model is used to calculate the latent effectiveness (ɛL) of the exchangers from the transient humidity response. It was found that the exchanger coated with the smallest pore width (63 Å) has the highest available surface area and the highest latent effectiveness. With almost the same particle size (dp = 150 μm and 160 μm), the latent effectiveness increases by 5% (at wheel speed 20 rpm and Re = 174) as the pore width reduces from 150 Å to 63 Å. Increasing the particle size from 55 μm to 150 μm with almost the identical pore width (Pw = 63 Å and 77 Å) results in a slight enhancement in the latent effectiveness. ɛL is also calculated for correlated data (Yoon–Nelson model) where the results agree within experimental uncertainty bounds.

References

References
1.
ASHRAE
,
2008
,
ASHRAE, HVAC Systems and Equipments
,
ASHRAE
,
Atlanta, GA
.
2.
Abe
,
O.
,
Simonson
,
C. J.
,
Besant
,
R. W.
, and
Shang
,
W.
,
2006
, “
Effectiveness of Energy Wheels From Transient Measurements—Part I: Prediction of Effectiveness and Uncertainty
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
52
62
.
3.
Abe
,
O. O.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2006
, “
Relationship Between Energy Wheel Speed and Effectiveness and Its Transient Response—Part II: Mathematical Development of the Characteristic Time Constants and Their Relationship With Effectiveness
,”
ASHRAE Trans.
,
112
(2), pp.
89
102
.
4.
ANSI/ASHRAE
,
2013
, “
Method of Testing Air-to-Air Heat/Energy Exchangers
,” Vol.
8400
, ASHRAE, Atlanta, GA, ANSI/ASHRAE Standard No. 84-2013.
5.
Fathieh
,
F.
,
Besant
,
R. W.
,
Evitts
,
R. W.
, and
Simonson
,
C. J.
,
2016
, “
Effects of Heat Loss/Gain on the Transient Testing of Heat Wheels
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031003
.
6.
Fathieh
,
F.
,
Rafati Nasr
,
M.
,
Sadeh
,
S.
,
Besant
,
R. W.
,
Evitts
,
R. W.
,
Müller
,
J.
, and
Simonson
,
C. J.
,
2016
, “
Determination of Latent Effectiveness in Regenerators Using Humidity Step Test Data
,”
Int. J. Heat Mass Transfer
,
103
, pp.
501
515
.
7.
Furukawa
,
H.
,
Gándara
,
F.
,
Zhang
,
Y.-B.
,
Jiang
,
J.
,
Queen
,
W. L.
,
Hudson
,
M. R.
, and
Yaghi
,
O. M.
,
2014
, “
Water Adsorption in Porous Metal–Organic Frameworks and Related Materials
,”
J. Am. Chem. Soc.
,
136
(
11
), pp.
4369
4381
.
8.
Dehabadi
,
L.
, and
Wilson
,
L. D.
,
2015
, “
An NMR Investigation of the Fractionation of Water-Ethanol Mixtures With Cellulose and Its Cross-Linked Biopolymer Forms
,”
Energy Fuels
,
30
(
7
), pp.
5684
5692
.
9.
Nawaz
,
K.
,
Schmidt
,
S. J.
, and
Jacobi
,
A. M.
,
2014
, “
Effect of Catalyst Used in the Sol–Gel Process on the Microstructure and Adsorption/Desorption Performance of Silica Aerogels
,”
Int. J. Heat Mass Transfer
,
74
, pp.
25
34
.
10.
Golubovic
,
M. N.
,
Hettiarachchi
,
H. D. M. D. M.
, and
Worek
,
W. M.
,
2006
, “
Sorption Properties for Different Types of Molecular Sieve and Their Influence on Optimum Dehumidification Performance of Desiccant Wheels
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2802
2809
.
11.
Zheng
,
X.
,
Ge
,
T. S.
, and
Wang
,
R. Z.
,
2014
, “
Recent Progress on Desiccant Materials for Solid Desiccant Cooling Systems
,”
Energy
,
74
, pp.
280
294
.
12.
Arenas
,
L. T.
,
Simm
,
C. W.
,
Gushikem
,
Y.
,
Dias
,
S. L. P.
,
Moro
,
C. C.
,
Costa
,
T. M. H.
, and
Benvenutti
,
E. V.
,
2007
, “
Synthesis of Silica Xerogels With High Surface Area Using Acetic Acid as Catalyst
,”
J. Braz. Chem. Soc.
,
18
(
5
), pp.
886
890
.
13.
Vijayalakshmi
,
U.
,
Balamurugan
,
A.
, and
Rajeswari
,
S.
,
2005
, “
Synthesis and Characterization of Porous Silica Gels for Biomedical Applications
,”
Trends Biomater. Artif. Organs
,
18
(
2
), pp.
101
105
.
14.
Yano
,
K.
, and
Fukushima
,
Y.
,
2003
, “
Particle Size Control of Mono-Dispersed Super-Microporous Silica Spheres
,”
J. Mater. Chem.
,
13
(
10
), pp.
2577
2581
.
15.
Wu
,
L. Y. L.
,
Nemeth
,
S.
,
Blanchet
,
T. A.
,
Peng
,
Y.-L.
,
Briscoe
,
B. J.
,
Ni
,
Z.
,
Gadow
,
R.
,
Scherer
,
D.
,
Khedkar
,
J.
,
Negulescu
,
I.
,
Meletis
,
E. I.
,
Briscoe
,
B. J.
,
Evans
,
P. D.
,
Pellilo
,
E.
, and
Sinha
,
S. K.
,
2003
, “
Non-Stick and Scratch Resistant Sol-Gel Coating for Aluminum
,”
MRS Proc.
,
778
(
2
), p.
U8.7/W7.7
.
16.
Sphaier
,
L. A.
, and
Worek
,
W. M.
,
2010
, “
Influence of Adsorbent Properties on Enthalpy Wheel Performance
,”
ASME
Paper No. IHTC14-22401.
17.
Wang
,
W.
,
Wu
,
L.
,
Li
,
Z.
,
Fang
,
Y.
,
Ding
,
J.
, and
Xiao
,
J.
,
2013
, “
An Overview of Adsorbents in the Rotary Desiccant Dehumidifier for Air Dehumidification
,”
Dry. Technol.
,
31
(
12
), pp.
1334
1345
.
18.
Naghash
,
M.
,
Fathieh
,
F.
,
Besant
,
R. W.
,
Evitts
,
R. W.
, and
Simonson
,
C. J.
,
2016
, “
Measurement of Convective Heat Transfer Coefficients in a Randomly Packed Bed of Silica Gel Particles Using IHTP Analysis
,”
Appl. Therm. Eng.
,
106
, pp.
361
370
.
19.
Nóbrega
,
C. E. L.
, and
Brum
,
N. C. L.
,
2009
, “
Modeling and Simulation of Heat and Enthalpy Recovery Wheels
,”
Energy
,
34
(
12
), pp.
2063
2068
.
20.
Simonson
,
C. J.
, and
Besant
,
R. W.
,
1998
, “
Heat and Moisture Transfer in Energy Wheels During Sorption, Condensation, and Frosting Conditions
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
699
708
.
21.
Zhang
,
L. Z.
, and
Niu
,
J. L.
,
2002
, “
Performance Comparisons of Desiccant Wheels for Air Dehumidification and Enthalpy Recovery
,”
Appl. Therm. Eng.
,
22
(
12
), pp.
1347
1367
.
22.
Zhang
,
X. J.
,
Dai
,
Y. J.
, and
Wang
,
R. Z.
,
2003
, “
A Simulation Study of Heat and Mass Transfer in a Honeycombed Rotary Desiccant Dehumidifier
,”
Appl. Therm. Eng.
,
23
(
8
), pp.
989
1003
.
23.
Nia
,
F. E.
,
van Paassen
,
D.
, and
Saidi
,
M. H.
,
2006
, “
Modeling and Simulation of Desiccant Wheel for Air Conditioning
,”
Energy Build.
,
38
(
10
), pp.
1230
1239
.
24.
Wu
,
Z.
,
Melnik
,
R. V. N. N.
, and
Borup
,
F.
,
2006
, “
Model-Based Analysis and Simulation of Regenerative Heat Wheel
,”
Energy Build.
,
38
(
5
), pp.
502
514
.
25.
Sphaier
,
L. A.
, and
Worek
,
W. M.
,
2004
, “
Analysis of Heat and Mass Transfer in Porous Sorbents Used in Rotary Regenerators
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3415
3430
.
26.
Simonson
,
C. J.
, and
Besant
,
R. W.
,
1999
, “
Energy Wheel Effectiveness—Part II: Correlations
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2171
2185
.
27.
Gorbach
,
A.
,
Stegmaier
,
M.
, and
Eigenberger
,
G.
,
2004
, “
Measurement and Modeling of Water Vapor Adsorption on Zeolite 4A—Equilibria and Kinetics
,”
Adsorption
,
10
(
1
), pp.
29
46
.
28.
Harding
,
A. W.
,
Foley
,
N. J.
,
Norman
,
P. R.
,
Francis
,
D. C.
, and
Thomas
,
K. M.
,
1998
, “
Diffusion Barriers in the Kinetics of Water Vapor Adsorption/Desorption on Activated Carbons
,”
Langmuir
,
14
(
14
), pp.
3858
3864
.
29.
Satoh
,
S.
,
Matsuyama
,
I.
, and
Susa
,
K.
,
1995
, “
Diffusion of Gases in Porous Silica Gel
,”
J. Non-Cryst. Solids
,
190
(
3
), pp.
206
211
.
30.
Wang
,
X.
,
Zimmermann
,
W.
,
Ng
,
K. C.
,
Chakraboty
,
A.
, and
Keller
,
J. U.
,
2004
, “
Investigation on the Isotherm of Silica Gel+Water Systems
,”
J. Therm. Anal. Calorim.
,
76
(
2
), pp.
659
669
.
31.
Ng
,
K. C.
,
Chua
,
H. T.
,
Chung
,
C. Y.
,
Loke
,
C. H.
,
Kashiwagi
,
T.
,
Akisawa
,
A.
, and
Saha
,
B. B.
,
2001
, “
Experimental Investigation of the Silica Gel–Water Adsorption Isotherm Characteristics
,”
Appl. Therm. Eng.
,
21
(
16
), pp.
1631
1642
.
32.
Li
,
X.
,
Li
,
Z.
,
Xia
,
Q.
, and
Xi
,
H.
,
2007
, “
Effects of Pore Sizes of Porous Silica Gels on Desorption Activation Energy of Water Vapor
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
869
876
.
33.
Brunauer
,
S.
,
Deming
,
L. S.
,
Deming
,
W. E.
, and
Teller
,
E.
,
1940
, “
On a Theory of the van der Waals Adsorption of Gases
,”
J. Am. Chem. Soc.
,
62
(
7
), pp.
1723
1732
.
34.
Benesi
,
H. A.
, and
Jones
,
A. C.
,
1959
, “
An Infrared Study of the Water-Silica Gel System
,”
J. Phys. Chem.
,
63
(
2
), pp.
179
182
.
35.
Bartell
,
F. E.
, and
Bower
,
J. E.
,
1952
, “
Adsorption of Vapors by Silica Gels of Different Structures
,”
J. Colloid Sci.
,
7
(
1
), pp.
80
93
.
36.
Kays
,
A. L.
, and
London
,
W. M.
,
1984
,
Compact Heat Exchanger
,
McGraw-Hill
,
New York
.
37.
Yoon
,
Y. H. E. E.
, and
Nelson
,
J. H.
,
1984
, “
Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life
,”
Am. Ind. Hyg. Assoc. J.
,
45
(
8
), pp.
509
516
.
38.
Xu
,
Z.
,
Cai
,
J.
, and
Pan
,
B.
,
2013
, “
Mathematically Modeling Fixed-Bed Adsorption in Aqueous Systems
,”
J. Zhejiang Univ., Sci., A
,
14
(
3
), pp.
155
176
.
39.
Rouquerol
,
F.
,
Rouquerol
,
J.
,
Sing
,
K. S. W.
,
Llewellyn
,
P.
, and
Maurin
,
G.
,
2014
,
Adsorption by Powders and Porous Solids
,
2nd ed.
,
Academic Press
,
Oxford, UK
.
40.
Copeland
,
L.
,
Blazek
,
J.
,
Salman
,
H.
, and
Tang
,
M. C.
,
2009
, “
Form and Functionality of Starch
,”
Food Hydrocolloids
,
23
(
6
), pp.
1527
1534
.
41.
Broekhoff
,
J.
,
1968
, “
Studies on Pore Systems in Catalysts XI. Pore Distribution Calculations From the Adsorption Branch of a Nitrogen Adsorption Isotherm in the Case of ‘Ink-Bottle’ Type Pores
,”
J. Catal.
,
10
(
2
), pp.
153
165
.
42.
Fathieh
,
F.
,
Dehabadi
,
L.
,
Wilson
,
L. D.
,
Besant
,
R. W.
,
Evitts
,
R. W.
, and
Simonson
,
C. J.
,
2016
, “
Sorption Study of a Strach Biopolymer as an Alternative Desiccant for Energy Wheels
,”
ACS Sustainable Chem. Eng.
,
4
(
3
), pp.
1262
1273
.
43.
Wang
,
Y. H.
,
Besant
,
R. W.
,
Simonson
,
C. J.
, and
Shang
,
W.
,
2005
, “
Transient Humidity Measurements for Flow Through an Energy Wheel
,”
ASHRAE Trans.
,
111
(
2
), pp.
353
369
.
44.
Fathieh
,
F.
,
Besant
,
R. W.
,
Evitts
,
R. W.
, and
Simonson
,
C. J.
,
2015
, “
Determination of Air-to-Air Heat Wheel Sensible Effectiveness Using Temperature Step Change Data
,”
Int. J. Heat Mass Transfer
,
87
, pp.
312
326
.
45.
Niu
,
J.
,
2001
, “
Membrane-Based Enthalpy Exchanger: Material Considerations and Clarification of Moisture Resistance
,”
J. Membr. Sci.
,
189
(
2
), pp.
179
191
.
46.
Dehabadi
,
L.
,
Fathieh
,
F.
,
Wilson
,
L. D.
,
Evitts
,
R. W.
, and
Simonson
,
C. J.
,
2017
, “
Study of Dehumidification and Regeneration in a Starch Coated Energy Wheel
,”
ACS Sustainable Chem. Eng.
,
5
(
1
), pp.
221
231
.
47.
Kamitsos
,
E. I.
,
Patsis
,
A. P.
, and
Kordas
,
G.
,
1993
, “
Infrared-Reflectance Spectra of Heat-Treated Sol-Gel-Derived Silica
,”
Phys. Rev. B
,
48
(
17
), pp.
12499
12505
.
48.
Gillis-D'hamers
,
I.
,
Vrancken
,
K. C.
,
Vansant
,
E. F.
, and
De Roy
,
G.
,
1992
, “
Fourier-Transform Infrared Photo-Acoustic Spectroscopy Study of the Free Hydroxyl Group Vibration: Dependence on the Pretreatment Temperature
,”
J. Chem. Soc. Faraday Trans.
,
88
(
14
), pp.
2047
2050
.
49.
Maniar
,
P. D.
,
Navrotsky
,
A.
,
Rabinovich
,
E. M.
,
Ying
,
J. Y.
, and
Benziger
,
J. B.
,
1990
, “
Energetics and Structure of Sol-Gel Silicas
,”
J. Non-Cryst. Solids
,
124
(
1
), pp.
101
111
.
50.
Gallas
,
M. R.
,
Rosa
,
A. R.
,
Costa
,
T. H.
, and
da Jornada
,
J. A. H.
,
1997
, “
High Pressure Compaction of Nanosize Ceramic Powders
,”
J. Mater. Res.
,
12
(
3
), pp.
764
768
.
51.
Almeida
,
R. M.
, and
Pantano
,
C. G.
,
1990
, “
Structural Investigation of Silica Gel Films by Infrared Spectroscopy
,”
J. Appl. Phys.
,
68
(
8
), pp.
4225
4232
.
52.
Wood
,
D. L.
, and
Rabinovich
,
E. M.
,
1989
, “
Study of Alkoxide Silica Gels by Infrared Spectroscopy
,”
Appl. Spectrosc.
,
43
(
2
), pp.
263
267
.
53.
Rumph
,
H.
, and
Schubert
,
H.
,
1978
,
Ceramic Processing Before Firing
,
Wiley
,
New York
.
54.
Decottignies
,
M.
,
Phalippou
,
J.
, and
Zarzycki
,
J.
,
1978
, “
Synthesis of Glasses by Hot-Pressing of Gels
,”
J. Mater. Sci.
,
13
(
12
), pp.
2605
2618
.
55.
Rouquerol
,
J.
,
Avnir
,
D.
,
Fairbridge
,
C. W.
,
Everett
,
D. H.
,
Haynes
,
J. H.
,
Pernicone
,
N.
,
Ramsay
,
J. D. F.
,
Sing
,
K. S. W.
, and
Unger
,
K. K.
,
1994
, “
Recommendations for the Characterization of Porous Solids
,”
Pure Appl. Chem.
,
66
(
8
), pp.
1739
1758
.
56.
Haul
,
R.
,
1982
, “
S. J. Gregg, K. S. W. Sing: Adsorption, Surface Area and Porosity. 2. Auflage, Academic Press, London 1982. 303 Seiten, Preis: 49.50
,”
Ber. Bunsengesellschaft Phys. Chem.
,
86
(
10
), p.
957
.
57.
Donohue
,
M. D.
, and
Aranovich
,
G. L.
,
1999
, “
A New Classification of Isotherms for Gibbs Adsorption of Gases on Solids
,”
Fluid Phase Equilib.
,
158–160
, pp.
557
563
.
58.
Shang
,
W.
, and
Besant
,
R. W.
,
2009
, “
Effectiveness of Desiccant Coated Regenerative Wheels From Transient Response Characteristics and Flow Channel Properties—Part I: Development of Effectiveness Equations
,”
HVACR Res.
,
15
(
2
), pp.
329
346
.
59.
Wang
,
Y.
,
2005
,
Transient Characteristics of Humidity Sensors and Their Application to Energy Wheels
,
University of Saskatchewan
,
Saskatoon, SK, Canada
.
60.
Eduardo
,
C.
, and
Nóbrega
,
L.
,
2014
,
Desiccant-Assisted Cooling Fundamentals and Applications
,
Springer
,
London, UK
.
61.
Chang
,
K.-S.
,
Chen
,
M.-T.
, and
Chung
,
T.-W.
,
2005
, “
Effects of the Thickness and Particle Size of Silica Gel on the Heat and Mass Transfer Performance of a Silica Gel-Coated Bed for Air-Conditioning Adsorption Systems
,”
Appl. Therm. Eng.
,
25
(
14–15
), pp.
2330
2340
.
62.
Qiu
,
H.
,
Lv
,
L.
,
Pan
,
B.
,
Zhang
,
Q.
,
Zhang
,
W.
, and
Zhang
,
Q.
,
2009
, “
Critical Review in Adsorption Kinetic Models
,”
J. Zhejiang Univ., Sci., A
,
10
(
5
), pp.
716
724
.
You do not currently have access to this content.