This study focuses on microheat sinks with different staggered arrangements of micro pin fins (MPFs). A rectangular microchannel with the dimensions of 5000 × 1500 × 100 μm3 (l′ × w′ × h′) was considered for all the configurations while different MPF diameters, height over diameter ratio (H/D), and longitudinal and transversal pitch ratios (SL/D and ST/D) were considered in different arrangements. Using the ansys fluent 14.5 commercial software, the simulations were done for different Reynolds numbers between 20 and 160. A constant heat flux of 30 W/cm2 was applied through the bottom heating section. The performances of the microheat sinks were evaluated using design parameters, namely pressure drop, friction factor, Nusselt number, and thermal-hydraulic performance index (TPI). The effect of each geometrical parameter as well as wake-pin fin interaction patterns were carefully studied using the streamline patterns and temperature profiles of each configuration. The results reveal a great dependency of trends in pressure drops and Nusselt numbers on the wake region lengths as well as the local velocity and pressure gradients. Moreover, the wake region lengths mostly contribute to the increase in obtained pressure drop and Nusselt number with Reynolds number. Although an increase in the H/D and SL/D ratios results in an increase and a decrease in pressure drop, respectively, the effect on the Nusselt number depends on other geometrical parameters and Reynolds number. A larger ST/D ratio generally results in a decrease in the pressure drop and Nusselt number. Finally, while the friction factor decreases with Reynolds number, two different trends are seen for the TPI values of configurations with the H/D ratio of 1 and 2 (D = 100 and 50 μm). While the trend in the TPIs is increasing for Reynolds numbers between 20 and 40, it reverses for higher Reynolds numbers with a steeper slope in the configurations with the ST/D ratio of 1.5.

References

References
1.
Epstein
,
A. H.
,
Senturia
,
S. D.
,
Al-Midani
,
O.
,
Anathasuresh
,
G.
,
Ayon
,
A.
,
Breuer
,
K.
,
Chen
,
K. S.
,
Enrich
,
F. E.
,
Esteve
,
E.
,
Frechette
,
L.
,
Gauba
,
G.
,
Ghodssi
,
R.
,
Groshenry
,
C.
,
Jacobson
,
S.
,
Kerrebrock
,
J. L.
,
Lang
,
J. H.
,
Lin
,
C. C.
,
London
,
A.
,
Lopata
,
J.
,
Mehra
,
A.
,
Miranda
,
J. O. M.
,
Nagle
,
S.
,
Orr
,
D. J.
,
Piekos
,
E.
,
Schmidt
,
M. A.
,
Shirley
,
G.
,
Spearing
,
S. M.
,
Tan
,
C. S.
,
Tzeng
,
Y. S.
, and
Waitz
,
I. A.
,
1997
, “
Micro-Heat Engines, Gas Turbines, and Rocket Engines—The MIT Microengine Project
,”
AIAA
Paper No. 1773.
2.
Kamper
,
K. P.
,
Ehrfeld
,
W.
,
Dopper
,
J.
,
Hessel
,
V.
,
Lehr
,
H.
,
Lowe
,
H.
,
Richter
,
T.
, and
Wolf
,
A.
,
1997
, “
Microfluidic Components for Biological and Chemical Microreactors
,”
IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems
, MEMS'97, pp.
338
343
.
3.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
49
58
.
4.
Kleinstreuer
,
C.
,
Li
,
J.
, and
Koo
,
J.
,
2008
, “
Microfluidics of Nano-Drug Delivery
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5590
5597
.
5.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
6.
Tuckerman
,
D. B.
,
1984
, “
Heat-Transfer Microstructures for Integrated Circuits
,” Ph.D. thesis, University of California, Livermore, CA.
7.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Gerner
,
F. M.
,
1999
, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
149
157
.
8.
Mala
,
G. M.
, and
Li
,
D.
,
1999
, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
142
148
.
9.
Toh
,
K. C.
,
Chen
,
X. Y.
, and
Chai
,
J. C.
,
2002
, “
Numerical Computation of Fluid Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
26
), pp.
5133
5141
.
10.
Li
,
Z.
,
Huai
,
X.
,
Tao
,
Y.
, and
Chen
,
H.
,
2007
, “
Effects of Thermal Property Variations on the Liquid Flow and Heat Transfer in Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
27
(17–18), pp.
2803
2814
.
11.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
12.
Kandlikar
,
S. G.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
, Amsterdam, The Netherlands.
13.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
14.
Li
,
Z.
,
He
,
Y. L.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2007
, “
Experimental and Numerical Studies of Liquid Flow and Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
,
50
(17–18), pp.
3447
3460
.
15.
Koşar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
419
430
.
16.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.
17.
Koşar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
131
.
18.
Koşar
,
A.
, and
Peles
,
Y.
,
2007
, “
Micro Scale Pin Fin Heat Sinks—Parametric Performance Evaluation Study
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
4
), pp.
855
865
.
19.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro Pin Fins—Part 1: Heat Transfer Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
124501
.
20.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro Pin Fins—Part 2: Pressure Drop Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
124501
.
21.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D.
, and
Prstic
,
S.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
141
153
.
22.
John
,
T. J.
,
Mathew
,
B.
, and
Hegab
,
H.
,
2010
, “
Parametric Study on the Combined Thermal and Hydraulic Performance of Single Phase Micro Pin-Fin Heat Sinks Part I: Square and Circle Geometries
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2177
2190
.
23.
Rubio-Jimenez
,
C. A.
,
Kandlikar
,
S. G.
, and
Hernandez-Guerrero
,
A.
,
2012
, “
Numerical Analysis of Novel Micro Pin Fin Heat Sink With Variable Fin Density
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
5
), pp.
825
833
.
24.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(15–16), pp.
3921
3932
.
25.
Koz
,
M.
,
Ozdemir
,
M. R.
, and
Koşar
,
A.
,
2011
, “
Parametric Study on the Effect of End Walls on Heat Transfer and Fluid Flow Across a Micro Pin-Fin
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1073
1084
.
26.
Izci
,
T.
,
Koz
,
M.
, and
Koşar
,
A.
,
2015
, “
The Effect of Micro Pin-Fin Shape on Thermal and Hydraulic Performance of Micro Pin-Fin Heat Sinks
,”
Heat Transfer Eng.
,
36
(
17
), pp.
1447
1457
.
27.
Zhang
,
J.
,
Zhao
,
Y.
,
Diao
,
Y.
, and
Zhang
,
Y.
,
2015
, “
An Experimental Study on Fluid Flow and Heat Transfer in a Multiport Minichannel Flat Tube With Micro-Fin Structures
,”
Int. J. Heat Mass Transfer
,
84
, pp.
511
520
.
28.
Mita
,
J.
, and
Qu
,
W.
,
2015
, “
Pressure Drop of Water Flow Across a Micro-Pin-Fin Array Part 1: Isothermal Liquid Single-Phase Flow
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1073
1082
.
29.
Zhao
,
J.
,
Huang
,
S.
,
Gong
,
L.
, and
Huang
,
Z.
,
2015
, “
Numerical Study and Optimizing on Micro Square Pin-Fin Heat Sink for Electronic Cooling
,”
Appl. Therm. Eng.
,
93
, pp.
1347
1359
.
30.
Zhao
,
H.
,
Liu
,
Z.
,
Zhang
,
C.
,
Guan
,
N.
, and
Zhao
,
H.
,
2016
, “
Pressure Drop and Friction Factor of a Rectangular Channel With Staggered Mini Pin Fins of Different Shapes
,”
Exp. Therm. Fluid Sci.
,
71
, pp.
57
69
.
31.
Yadav
,
V.
,
Baghel
,
K.
,
Kumar
,
R.
, and
Kadam
,
S. T.
,
2016
, “
Numerical Investigation of Heat Transfer in Extended Surface Microchannels
,”
Int. J. Heat Mass Transfer
,
93
, pp.
612
622
.
32.
Mohammadi
,
A.
, and
Koşar
,
A.
,
2016
, “
Hydrodynamic and Thermal Performance of Microchannels With Different In-Line Arrangements of Cylindrical Micro Pin Fins
,”
ASME J. Heat Transfer
,
138
(12), p. 122403.
You do not currently have access to this content.