Microchannels have been studied extensively for a variety of heat transfer applications including electronic cooling. Many configurations of microchannels have been studied and compared for their effectiveness in terms of heat removal. Recently, the use of staggered pins in microchannels has gained considerable traction, since they can promote internal flow fluctuations that enhance internal heat transfer. Furthermore, staggered pins in microchannels have shown higher heat removal characteristics because of the continuous breaking and formation of the heat transfer fluid boundary layer. However, they also exhibit higher pressure drop because the pins act as flow obstructions. This paper presents numerical results of two characteristic staggered 100-μm pins (square and circular) in microchannels. The heat transfer performance of a single phase fluid (SPF) in microchannels with staggered pins, and the corresponding pressure drop characteristics are presented. Furthermore, a phase change material (PCM, n-eicosane) fluid was also considered by implementing the effective specific heat capacity model approach to account for the corresponding phase change process of PCM fluid. Comparisons of the heat transfer characteristics of single phase fluid and PCM fluid are presented for two different pin geometries and three different Reynolds numbers. Circular pins were found to be more effective in terms of heat transfer by exhibiting higher Nusselt number. Microchannels with circular pins were also found to have lower pressure drop compared to the square-pin microchannels.

References

1.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
2.
Li
,
L.
,
Cui
,
W.
,
Liao
,
Q.
,
Mingdao
,
X.
, and
Jen
,
T. C.
,
2005
, “
Heat Transfer Augmentation in 3D Internally Finned and Microfinned Helical Tube
,”
Int. J. Heat Mass Transfer
,
48
(
10
), pp.
1916
1925
.
3.
Liu
,
J. T.
,
Peng
,
X. F.
, and
Yan
,
W. M.
,
2007
, “
Numerical Study of Fluid Flow and Heat Transfer in Microchannel Cooling Passages
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1855
1864
.
4.
Wei
,
X.
,
Joshi
,
Y.
, and
Patterson
,
M. K.
,
2007
, “
Experimental and Numerical Study of Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices
,”
ASME J. Heat Transfer
,
129
(
10
), pp.
1432
1444
.
5.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2007
, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
63
70
.
6.
Prasher
,
R.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D.
, and
Prstic
,
S.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
141
153
.
7.
Peles
,
Y.
,
Kosar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.
8.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.
9.
Ravi
,
G.
,
Alvarado
,
J. L.
,
Marsh
,
C.
, and
Kessler
,
D. A.
,
2009
, “
Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid in Finned Tubes
,”
Numer. Heat Transfer, Part A
,
55
(
8
), pp.
721
738
.
10.
Yamagishi
,
Y.
,
Takeuchi
,
H.
,
Pyatenko
,
A. T.
, and
Kayukawa
,
N.
,
1999
, “
Characteristics of Microencapsulated PCM Slurry as a Heat Transfer Fluid
,”
AIChE J.
,
45
(
4
), pp.
696
707
.
11.
Chen
,
B.
,
Wang
,
X.
,
Zeng
,
R.
,
Zhang
,
Y.
,
Wang
,
X.
,
Niu
,
J.
,
Li
,
Y.
, and
Di
,
H.
,
2008
, “
An Experimental Study of Convective Heat Transfer With Microencapsulated Phase Change Material Suspension: Laminar Flow in Circular Tube Under Constant Heat Flux
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1638
1646
.
12.
Roy
,
S. K.
, and
Avanic
,
B. L.
,
2001
, “
Laminar Forced Convection Heat Transfer With Phase Change Material Suspensions
,”
Int. Commun. Heat Mass Transfer
,
28
(
7
), pp.
895
904
.
13.
Wang
,
X.
,
Niu
,
J.
,
Li
,
Y.
,
Wang
,
X.
,
Chen
,
B.
,
Zeng
,
R.
, and
Song
,
Q.
,
2007
, “
Flow and Heat Transfer Behaviors of Phase Change Material Slurries in a Horizontal Circular Tube
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2480
2491
.
14.
Hu
,
X.
, and
Zhang
,
Y.
,
2002
, “
Novel Insight and Numerical Analysis of Convective Heat Transfer Enhancement With Microencapsulated Phase Change Material Slurries: Laminar Flow in a Circular Tube With Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3163
3172
.
15.
Alisetti
,
E. L.
, and
Roy
,
S. K.
,
2000
, “
Forced Convection Heat Transfer to Phase Change Material Slurries in Circular Ducts
,”
J. Thermophys.
,
14
(
1
), pp.
115
118
.
16.
Alvarado
,
J. L.
,
Charles
,
M.
,
Sohn
,
C.
,
Phetteplace
,
G.
, and
Newell
,
T.
,
2007
, “
Thermal Performance of Microencapsulated Phase Change Material Slurry in Turbulent Flow Under Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1938
1952
.
17.
Xing
,
K. Q.
,
Tao
,
Y. X.
, and
Hao
,
Y. L.
,
2005
, “
Performance Evaluation of Liquid Flow With PCM Particles in Microchannels
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
931
940
.
18.
Hao
,
Y. L.
, and
Tao
,
Y. X.
,
2004
, “
A Numerical Model for Phase-Change Suspension Flow in Microchannels
,”
Numer. Heat Transfer
,
46
(
1
), pp.
55
77
.
19.
Sabbah
,
R.
,
Farid
,
M. M.
, and
Al-Hallaj
,
S.
,
2009
, “
Micro-Channel Heat Sink With Slurry of Water With Micro-Encapsulated Phase Change Material: 3D-Numerical Study
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
445
454
.
20.
Vand
,
V.
,
1945
, “
Theory of Viscosity of Concentrated Suspensions
,”
Nature
,
155
, pp.
364
365
.
21.
ANSYS
,
2013
, “
Product Documentation, Fluent 6.3.26
,”
ANSYS, Inc.
,
Canonsburg, PA
.
22.
Ravi
,
G.
,
2008
, “
Study of Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid
,” MS thesis, Texas A&M University, College Station, TX.
23.
Kays
,
W. M.
,
1966
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
24.
Shah
,
R. K.
, and
London
,
A. L.
,
1974
, “
Thermal Boundary Conditions and Some Solutions for Laminar Duct Flow Forced Convection
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
159
165
.
25.
Kandlikar
,
S.
,
2005
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Amsterdam, The Netherlands
.
26.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
27.
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” ASME, New York, Standard No. ASME V V20-2009.
28.
Kondle
,
S.
,
Alvarado
,
J. L.
,
Marsh
,
C.
,
Kessler
,
D.
, and
Stynoski
,
P.
,
2009
, “
Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid in Microchannels
,”
ASME
Paper No. IMECE2009-10787.
29.
Kondle
,
S.
,
Alvarado
,
J. L.
, and
Marsh
,
C.
,
2013
, “
Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid in Microchannels
,”
ASME J. Heat Transfer
,
135
(
5
), p.
052801
.
30.
Soodphakde
,
D.
,
Behnia
,
M.
, and
Copeland
,
D. W.
,
2001
, “
A Comparison of Fin Geometries for Heat Sinks in Laminar Forced Convection: Part I—Round, Elliptical, and Plate Fins in Staggered and In-Line Configurations
,”
Int. J. Microcircuits Electron. Packag.
,
24
(
1
), pp.
68
76
.
31.
Agaro
,
P. D.
, and
Comini
,
G.
,
2008
, “
Thermal-Performance Evaluation of Coolant Passages With Staggered Arrays of Pin Fins
,”
Heat Mass Transfer
,
44
(
7
), pp.
815
825
.
32.
Comini
,
G.
, and
Croce
,
G.
,
2003
, “
Numerical Simulation of Convective Heat and Mass Transfer in Banks of Tubes
,”
Int. J. Numer. Methods Eng.
,
57
(
12
), pp.
1755
1773
.
33.
Fox
,
R. W.
, and
McDonald
,
A. T.
,
2004
,
Introduction to Fluid Mechanics
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.