This work numerically studies the effects of inlet air and fuel turbulators on the thermal behavior of a combustor burning the jet propulsion (JP) (kerosene-surrogate) fuel and its resulting pollutants emission including the nanoparticulate soot aerosols and aromatic compounds. To model the soot formation, the method employs a semi-empirical two-equation model, in which the transport equations for soot mass fraction and soot number density are solved considering soot nanoparticles evolutionary process. The soot nucleation is described using the phenyl route in which the soot is formed from the polycyclic aromatic hydrocarbons. Incorporating a detailed chemical mechanism described by 200 species and 6907 elementary reactions, the flamelets and their lookup table library are precomputed and used in the context of steady laminar flamelet model (SLFM). Thus, the current finite-volume method solves the transport equations for the mean mixture fraction and its variance and considers the chemistry–turbulence interaction using the presumed-shape probability density functions (PDFs). To validate the utilized models, a benchmark combustor is first simulated, and the results are compared with the measurements. Second, the numerical method is used to investigate the effects of embedding different inflow turbulators on the resulting flame structure and the combustor pollutants emission. The chosen turbulators produce mild to severe turbulence intensity (TI) effects at the air and fuel inlets. Generally, the results of current study indicate that the use of suitable turbulators can considerably affect the thermal behavior of a JP-fueled combustor. Additionally, it also reduces the combustor polycyclic aromatic hydrocarbon (PAH) pollutants emission.

References

References
1.
Kennedy
,
L. A.
, and
Scaccia
,
C.
,
1974
, “
Modeling of Combustion Chambers for Predicting Pollutant Concentrations
,”
ASME J. Heat Transfer
,
96
(
3
), pp.
405
409
.
2.
Said
,
N. M.
,
Mhiri
,
H.
,
Golli
,
S. E.
,
Palec
,
G. L.
, and
Bournot
,
P.
,
2003
, “
Three-Dimensional Numerical Calculations of a Jet in an External Cross Flow: Application to Pollutant Dispersion
,”
ASME J. Heat Transfer
,
125
(
3
), pp.
510
522
.
3.
Zsély
,
I. G.
,
Zádor
,
J.
, and
Turányi
,
T.
,
2005
, “
Uncertainty Analysis of Updated Hydrogen and Carbon Monoxide Oxidation Mechanisms
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1273
1281
.
4.
Chyu
,
M. K.
,
Siw
,
S. C.
,
Karaivanov
,
V. G.
,
Slaughter
,
W. S.
, and
Alvin
,
M. A.
,
2009
, “
Aerothermal Challenges in Syngas, Hydrogen-Fired, and Oxyfuel Turbines—Part II: Effects of Internal Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
1
), p.
011003
.
5.
Jiang
,
L.
,
2013
, “
A Critical Evaluation of Turbulence Modeling in a Model Combustor
,”
J. Therm. Sci. Eng. Applications
,
5
(
3
), p.
031002
.
6.
Xu
,
H.
,
Smoot
,
L. D.
, and
Hill
,
S. C.
,
1999
, “
Computational Model for NOx Reduction by Advanced Reburning
,”
Energy Fuels
,
13
(
2
), pp.
411
420
.
7.
Falcitelli
,
M.
,
Pasini
,
S.
, and
Tognotti
,
L.
,
2002
, “
Modelling Practical Combustion Systems and Predicting NOx Emissions With an Integrated CFD Based Approach
,”
Comput. Chem. Eng.
,
26
(
9
), pp.
1171
1183
.
8.
Holdeman
,
J. D.
, and
Chang
,
C. T.
,
2007
, “
The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1460
1467
.
9.
Yang
,
B.-J.
,
Mao
,
S.
,
Altin
,
O.
,
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2011
, “
Condensation Analysis of Exhaust Gas Recirculation System for Heavy-Duty Trucks
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041007
.
10.
Zhou
,
H.
,
Yang
,
Y.
,
Liu
,
H.
, and
Hang
,
Q.
,
2014
, “
Numerical Simulation of the Combustion Characteristics of a Low NOx Swirl Burner: Influence of the Primary Air Pipe
,”
Fuel
,
130
, pp.
168
176
.
11.
Funke
,
H. H. W.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Ayed
,
A. H.
,
Kazari
,
M.
,
Kitajima
,
J.
,
Horikawa
,
A.
, and
Okada
,
K.
,
2016
, “
Experimental and Numerical Study on Optimizing the Dry Low NOx Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
02100
.
12.
Leung
,
K. M.
,
Lindstedt
,
R. P.
, and
Jones
,
W. P.
,
1991
, “
A Simplified Reaction Mechanism for Soot Formation in Nonpremixed Flames
,”
Combust. Flame
,
87
(
3–4
), pp.
289
305
.
13.
Kennedy
,
I. M.
,
Yam
,
C.
,
Rapp
,
D. C.
, and
Santoro
,
R. J.
,
1996
, “
Modeling and Measurements of Soot and Species in a Laminar Diffusion Flame
,”
Combust. Flame
,
107
(
4
), pp.
368
382
.
14.
Mueller
,
M. E.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2009
, “
A Joint Volume-Surface Model of Soot Aggregation With the Method of Moments
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
785
792
.
15.
Mueller
,
M. E.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2011
, “
Modeling the Oxidation-Induced Fragmentation of Soot Aggregates in Laminar Flame
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
667
674
.
16.
Xuan
,
Y.
,
Blanquart
,
G.
, and
Mueller
,
M. E.
,
2014
, “
Modeling Curvature Effects in Diffusion Flames Using a Laminar Flamelet Model
,”
Combust. Flame
,
161
(
5
), pp.
1294
1309
.
17.
Brookes
,
S. J.
, and
Moss
,
J. B.
,
1999
, “
Predictions of Soot and Thermal Radiation Properties in Confined Turbulent Jet Diffusion Flames
,”
Combust. Flame
,
116
(
4
), pp.
486
503
.
18.
Kronenburg
,
A.
,
Bilger
,
R. W.
, and
Kent
,
J. H.
,
2000
, “
Modeling Soot Formation in Turbulent Methane-Air Jet Diffusion Flames
,”
Combust. Flame
,
121
(
1–2
), pp.
24
40
.
19.
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2012
, “
LES Model for Sooting Turbulent Nonpremixed Flame
,”
Combust. Flame
,
159
(
6
), pp.
2166
2180
.
20.
Donde
,
P.
,
Raman
,
V.
,
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2013
, “
LES/PDF Based Modeling of Soot-Turbulence Interactions in Turbulent Flame
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1183
1192
.
21.
Mueller
,
M. E.
,
Chan
,
Q. N.
,
Qamar
,
N. H.
,
Dally
,
B. B.
,
Pitsch
,
H.
,
Alwahabi
,
Z. T.
, and
Nathan
,
G. J.
,
2013
, “
Experimental and Computational Study of Soot Evolution in a Turbulent Nonpremixed Bluff Body Ethylene Flame
,”
Combust. Flame
,
160
(
7
), pp.
1298
1309
.
22.
Mueller
,
M. E.
, and
Raman
,
V.
,
2014
, “
Effects of Turbulent Combustion Modeling Errors on Soot Evolution in a Turbulent Nonpremixed Jet Flame
,”
Combust. Flame
,
161
(
7
), pp.
1842
1848
.
23.
Reddy
,
B. M.
,
De
,
A.
, and
Yadav
,
R.
,
2014
, “
Numerical Investigation of Soot Formation in Turbulent Diffusion Flame With Strong Turbulence-Chemistry Interaction
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), p.
011001
.
24.
Song
,
Y.-N.
, and
Zhong
,
B.-J.
,
2008
, “
Modeling of Soot and Polycyclic Aromatic Hydrocarbons in Diesel Diffusion Combustion
,”
Chem. Eng. Technol.
,
31
(
10
), pp.
1418
1423
.
25.
Marchal
,
C.
,
Delfau
,
J.-L.
,
Vovelle
,
C.
,
Moréac
,
G.
,
Mounaïm-Rousselle
,
C.
, and
Mauss
,
F.
,
2009
, “
Modelling of Aromatics and Soot Formation From Large Fuel Molecules
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
753
759
.
26.
Pang
,
K. M.
,
Ng
,
H. K.
, and
Gan
,
S.
,
2011
, “
Development of an Integrated Reduced Fuel Oxidation and Soot Precursor Formation Mechanism for CFD Simulations of Diesel Combustion
,”
Fuel
,
90
(
9
), pp.
2902
2914
.
27.
Wen
,
Z.
,
Yun
,
S.
,
Thomson
,
M. J.
, and
Lightstone
,
M. F.
,
2003
, “
Modeling Soot Formation in Turbulent Kerosene/Air Jet Diffusion Flames
,”
Combust. Flame
,
135
(
3
), pp.
323
340
.
28.
Katta
,
V. R.
,
Meyer
,
T. R.
,
Montgomery
,
C.
, and
Roquemore
,
W. M.
,
2005
, “
Studies on Soot Formation in a Model Gas-Turbine Combustor
,”
AIAA
Paper No. 2005-3777.
29.
Sadiki
,
A.
,
Chrigui
,
M.
,
Janicka
,
J.
, and
Maneshkarimi
,
M. R.
,
2005
, “
Modeling and Simulation of Effects of Turbulence on Vaporization, Mixing and Combustion of Liquid-Fuel Sprays
,”
Flow Turbul. Combust.
,
75
(
1–4
), pp.
105
130
.
30.
Kim
,
T.
,
Song
,
J.
, and
Park
,
S.
,
2015
, “
Effects of Turbulence Enhancement on Combustion Process Using a Double Injection Strategy in Direct-Injection Spark-Ignition (DISI) Gasoline Engines
,”
Int. J. Heat Fluid Flow
,
56
, pp.
124
136
.
31.
Sornek
,
R. J.
,
Dobashi
,
R.
, and
Hirano
,
T.
,
2000
, “
Effect of Turbulence on Vaporization, Mixing, and Combustion of Liquid-Fuel Sprays
,”
Combust. Flame
,
120
(
4
), pp.
479
491
.
32.
Leuckel
,
W.
,
Nastoll
,
W.
, and
Zarzalis
,
N.
,
1989
, “
Influence of Turbulence on Transient Premixed Flame Propagation Inside Closed Vessels
,”
Chem. Eng. Technol.
,
12
(
1
), pp.
226
233
.
33.
Darbandi
,
M.
,
Ghafourizadeh
,
M.
, and
Jafari
,
S.
,
2013
, “
Simulation of Soot Nanoparticles Formation and Oxidation in a Turbulent Non-Premixed Methane-Air Flame at Elevated Pressure
,”
Nanotechnology (IEEE-NANO), 13th IEEE International Conference on Nanotechnology
,
IEEE
, Bejing, China, Aug. 5–9, pp.
608
613
.
34.
Darbandi
,
M.
,
Ghafourizadeh
,
M.
, and
Schneider
,
G. E.
,
2014
, “
Extending a Numerical Procedure to Simulate the Micro/Nanoscale Soot Formation in Ethylene-Air Turbulent Flame Using Acetylene-Route Nucleation
,”
AIAA
Paper No. 2014-2385.
35.
Darbandi
,
M.
,
Ghafourizadeh
,
M.
, and
Schneider
,
G. E.
,
2015
, “
Numerical Study on the Effects of Fuel Injector Cone-Angle on Soot Nano-Particles, CO, and CO2 Pollutions in a Combustion Chamber Burning Kerosene
,”
AIAA
Paper No. 2015-3728.
36.
Darbandi
,
M.
, and
Ghafourizadeh
,
M.
,
2015
, “
Solving Turbulent Diffusion Flame in Cylindrical Frame Applying an Improved Advective Kinetics Scheme
,”
Theor. Comput. Fluid Dyn.
29
(
5–6
), pp.
413
431
.
37.
Darbandi
,
M.
, and
Ghafourizadeh
,
M.
,
2016
, “
A New Bi-Implicit Finite Volume Element Method for Coupled Systems of Turbulent Flow and Aerosol-Combustion Dynamics
,”
J. Coupled Syst. Multiscale Dyn.
,
4
(
1
), pp.
43
59
.
38.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
39.
Kent
,
J. H.
, and
Honnery
,
D.
,
1987
, “
Soot and Mixture Fraction in Turbulent Diffusion Flames
,”
Combust. Sci. Technol.
,
54
(
1–6
), pp.
383
397
.
40.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.
41.
Jeng
,
S.-M.
, and
Faeth
,
M.
,
1984
, “
Species Concentrations and Turbulence Properties in Buoyant Methane Diffusion Flames
,”
ASME J. Heat Transfer
,
106
(
4
), pp.
721
727
.
42.
Gore
,
J. P.
, and
Faeth
,
G. M.
,
1988
, “
Structure and Radiation Properties of Luminous Turbulent Acetylene/Air Diffusion Flames
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
173
181
.
43.
Kounalakis
,
M. E.
,
Gore
,
J. P.
, and
Faeth
,
G. M.
,
1989
, “
Mean and Fluctuating Radiation Properties of Nonpremixed Turbulent Carbon Monoxide/Air Flames
,”
ASME J. Heat Transfer
,
111
(
4
), pp.
1021
1030
.
44.
Emery
,
P.
,
Maroteaux
,
F.
, and
Sorine
,
M.
,
2003
, “
Modeling of Combustion in Gasoline Direct Injection Engines for the Optimization of Engine Management System Through Reduction of Three-Dimensional Models to (n × One-Dimensional) Models
,”
ASME J. Fluids Eng.
,
125
(
3
), pp.
520
532
.
45.
Alfaro-Ayala
,
J. A.
,
Gallegos-Muñoz
,
A.
,
Riesco-Ávila
,
J. M.
,
Flores-López
,
M.
,
Campos-Amezcua
,
A.
, and
Mani-González
,
A. G. N.
,
2011
, “
Analysis of the Flow in the Combustor-Transition Piece Considering the Variation in the Fuel Composition
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021003
.
46.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Granata
,
S.
, and
Faravelli
,
T.
,
2005
, “
Wide-Range Kinetic Modeling Study of the Pyrolysis, Partial Oxidation, and Combustion of Heavy n-Alkanes
,”
Ind. Eng. Chem. Res.
,
44
(
14
), pp.
5170
5183
.
47.
Sozer
,
E.
,
Hassan
,
E. A.
,
Yun
,
S.
,
Thakur
,
S.
,
Wright
,
J.
,
Ihme
,
M.
, and
Shyy
,
W.
,
2010
, “
Turbulence-Chemistry Interaction and Heat Transfer Modeling of H2/O2 Gaseous Injector Flows
,”
AIAA
Paper No. 2010-1525.
48.
Hall
,
R. J.
,
Smooke
,
M. D.
, and
Colket
,
M. B.
,
1997
, “
Predictions of Soot Dynamics in Opposed Jet Diffusion Flames
,”
Physical and Chemical Aspects of Combustion: A Tribute to Irvin Glassman
,
I.
Glassman
,
R. F.
Sawyer
, and
F. L.
Dryer
, eds.,
Gordon and Breach Science Publishers
,
Amsterdam, Netherlands
, pp.
189
230
.
49.
Hall
,
R. J.
,
1988
, “
Computation of the Radiative Power Loss in a Sooting Diffusion Flame
,”
Appl. Opt.
,
27
(
5
), pp.
809
811
.
50.
Barlow
,
R. S.
,
Karpetis
,
A. N.
,
Frank
,
J. H.
, and
Chen
,
J.-Y.
,
2001
, “
Scalar Profiles and NO Formation in Laminar Opposed-Flow Partially Premixed Methane/Air Flames
,”
Combust. Flame
,
127
(
3
), pp.
2102
2118
.
51.
Young
,
K. J.
,
Stewart
,
C. D.
, and
Moss
,
J. B.
,
1994
, “
Soot Formation in Turbulent Nonpremixed Kerosine-Air Flames Burning at Elevated Pressure: Experimental Measurement
,”
Proc. Combust. Inst.
,
25
(
1
), pp.
609
617
.
52.
Schneider
,
G. E.
, and
Raw
,
M. J.
,
1987
, “
Control Volume Finite-Element Method for Heat Transfer and Fluid Flow Using Colocated Variables—1: Computational Procedure
,”
Numer. Heat Transfer
,
11
(
4
), pp.
363
390
.
53.
Darbandi
,
M.
, and
Schneider
,
G. E.
,
1997
, “
Momentum Variable Procedure for Solving Compressible and Incompressible Flows
,”
AIAA J.
,
35
(
12
), pp.
1801
1805
.
54.
Darbandi
,
M.
, and
Schneider
,
G. E.
,
1998
, “
Analogy-Based Method for Solving Compressible and Incompressible Flows
,”
J. Thermophys. Heat Transfer
,
12
(
2
), pp.
239
247
.
55.
Darbandi
,
M.
, and
Schneider
,
G. E.
,
2003
, “
Thermobuoyancy Treatment for Electronic Packaging Using an Improved Advection Scheme
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
244
250
.
56.
Darbandi
,
M.
, and
Vakilipour
,
S.
,
2008
, “
Developing Implicit Pressure-Weighted Upwinding Scheme to Calculate Steady and Unsteady Flows on Unstructured Grids
,”
Int. J. Numer. Methods Fluids
,
56
(
2
), pp.
115
141
.
57.
Darbandi
,
M.
,
Vakili
,
S.
, and
Schneider
,
G. E.
,
2008
, “
Efficient Multilevel Restriction-Prolongation Expressions for Hybrid Finite Volume Element Method
,”
Int. J. Comput. Fluid Dyn.
,
22
(
1–2
), pp.
29
38
.
58.
Naderi
,
A.
,
Darbandi
,
M.
, and
Taeibi-Rahni
,
M.
,
2010
, “
Developing a Unified FVE-ALE Approach to Solve Unsteady Fluid Flow With Moving Boundaries
,”
Int. J. Numer. Methods Fluids
,
63
(
1
), pp.
40
68
.
59.
Darbandi
,
M.
, and
Ghafourizadeh
,
M.
,
2014
, “
Extending a Hybrid Finite-Volume-Element Method to Solve Laminar Diffusive Flame
,”
Numer. Heat Transfer, Part B
,
66
(
2
), pp.
181
210
.
60.
Wang
,
H.
,
2011
, “
Formation of Nascent Soot and Other Condensed-Phase Materials in Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
41
67
.
61.
Roy
,
S. P.
, and
Haworth
,
D. C.
,
2016
, “
A Systematic Comparison of Detailed Soot Models and Gas-Phase Chemical Mechanisms in Laminar Premixed Flames
,”
Combust. Sci. Technol.
,
188
(
7
), pp.
1021
1053
.
62.
Camp
,
T. R.
, and
Shin
,
H.-W.
,
1995
, “
Turbulence Intensity and Length Scale Measurements in Multistage Compressors
,”
ASME J. Turbomach.
,
117
(
1
), pp.
38
46
.
63.
Lengani
,
D.
,
Paradiso
,
B.
, and
Marn
,
A.
,
2012
, “
A Method for the Determination of Turbulence Intensity by Means of a Fast Response Pressure Probe and Its Application in a LP Turbine
,”
J. Therm. Sci.
,
21
(
1
), pp.
21
31
.
You do not currently have access to this content.