A new way was proposed to enhance the interfacial thermal conductance (ITC) of silicon carbide (SiC) composite through the overlapped carbon nanotubes (CNTs) and intertube atoms. By nonequilibrium molecular dynamics (NEMD) simulations, the dependence of ITC on both the number of intertube atoms and the temperature was studied. It is indicated that the ITC can be significantly enhanced by adding intertube atoms and finally becomes saturated with the increase of the number of intertube atoms. And the mechanism is discussed by analyzing the probability distributions of atomic forces and vibrational density of states (VDOS). This work may provide some guidance on enhancing the ITC of CNT-based composites.

References

References
1.
Chelnokov
,
V.
, and
Syrkin
,
A.
,
1997
, “
High Temperature Electronics Using SiC: Actual Situation and Unsolved Problems
,”
Mater. Sci. Eng., B
,
46
(
1
), pp.
248
253
.
2.
Sarro
,
P. M.
,
2000
, “
Silicon Carbide as a New MEMS Technology
,”
Sens. Actuators, A
,
82
(
1
), pp.
210
218
.
3.
Weitzel
,
C. E.
,
Palmour
,
J. W.
,
Carter
,
C. H.
, Jr.
,
Moore
,
K.
,
Nordquist
,
K. J.
,
Allen
,
S.
,
Thero
,
C.
, and
Bhatnagar
,
M.
,
1996
, “
Silicon Carbide High-Power Devices
,”
IEEE Trans. Electron Devices
,
43
(
10
), pp.
1732
1741
.
4.
Verrall
,
R.
,
Vlajic
,
M.
, and
Krstic
,
V.
,
1999
, “
Silicon Carbide as an Inert-Matrix for a Thermal Reactor Fuel
,”
J. Nucl. Mater.
,
274
(
1
), pp.
54
60
.
5.
Möslang
,
A.
, and
Wiss
,
T.
,
2006
, “
Materials for Energy: From Fission Towards Fusion
,”
Nat. Mater.
,
5
(
9
), pp.
679
680
.
6.
Kawamura
,
T.
,
Hori
,
D.
,
Kangawa
,
Y.
,
Kakimoto
,
K.
,
Yoshimura
,
M.
, and
Mori
,
Y.
,
2008
, “
Thermal Conductivity of SiC Calculated by Molecular Dynamics
,”
Jpn. J. Appl. Phys.
,
47
(
12
), pp.
8898
8901
.
7.
Casady
,
J.
, and
Johnson
,
R. W.
,
1996
, “
Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review
,”
Solid-State Electron.
,
39
(
10
), pp.
1409
1422
.
8.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.
9.
Hu
,
L.
,
Zhang
,
L.
,
Hu
,
M.
,
Wang
,
J.-S.
,
Li
,
B.
, and
Keblinski
,
P.
,
2010
, “
Phonon Interference at Self-Assembled Monolayer Interfaces: Molecular Dynamics Simulations
,”
Phys. Rev. B
,
81
(
23
), p.
235427
.
10.
Zhang
,
L.
,
Keblinski
,
P.
,
Wang
,
J.-S.
, and
Li
,
B.
,
2011
, “
Interfacial Thermal Transport in Atomic Junctions
,”
Phys. Rev. B
,
83
(
6
), p.
064303
.
11.
Hopkins
,
P. E.
,
Duda
,
J. C.
,
Petz
,
C. W.
, and
Floro
,
J. A.
,
2011
, “
Controlling Thermal Conductance Through Quantum Dot Roughening at Interfaces
,”
Phys. Rev. B
,
84
(
3
), p.
035438
.
12.
Chalopin
,
Y.
,
Esfarjani
,
K.
,
Henry
,
A.
,
Volz
,
S.
, and
Chen
,
G.
,
2012
, “
Thermal Interface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics
,”
Phys. Rev. B
,
85
(
19
), p.
195302
.
13.
Tian
,
Z.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2012
, “
Enhancing Phonon Transmission Across a Si/Ge Interface by Atomic Roughness: First-Principles Study With the Green's Function Method
,”
Phys. Rev. B
,
86
(
23
), p.
235304
.
14.
Luo
,
T.
, and
Chen
,
G.
,
2013
, “
Nanoscale Heat Transfer—From Computation to Experiment
,”
Phys. Chem. Chem. Phys.
,
15
(
10
), pp.
3389
3412
.
15.
Hopkins
,
P. E.
,
2013
, “
Thermal Transport Across Solid Interfaces With Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance
,”
ISRN Mech. Eng.
,
2013
, p.
682586
.
16.
Li
,
M.
,
Zhang
,
J.
,
Hu
,
X.
, and
Yue
,
Y.
,
2015
, “
Thermal Transport Across Graphene/SiC Interface: Effects of Atomic Bond and Crystallinity of Substrate
,”
Appl. Phys. A
,
119
(
2
), pp.
415
424
.
17.
Yang
,
N.
,
Luo
,
T.
,
Esfarjani
,
K.
,
Henry
,
A.
,
Tian
,
Z.
,
Shiomi
,
J.
,
Chalopin
,
Y.
,
Li
,
B.
, and
Chen
,
G.
,
2015
, “
Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations
,”
J. Comput. Theor. Nanosci.
,
12
(
2
), pp.
168
174
.
18.
Zhou
,
Y.
,
Zhang
,
X.
, and
Hu
,
M.
,
2016
, “
An Excellent Candidate for Largely Reducing Interfacial Thermal Resistance: A Nano-Confined Mass Graded Interface
,”
Nanoscale
,
8
(
4
), pp.
1994
2002
.
19.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
,
2001
, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.
20.
Liao
,
Q.
,
Liu
,
Z.
,
Liu
,
W.
,
Deng
,
C.
, and
Yang
,
N.
,
2015
, “
Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites
,”
Sci. Rep.
,
5
, p.
16543
.
21.
Hone
,
J.
,
Whitney
,
M.
,
Piskoti
,
C.
, and
Zettl
,
A.
,
1999
, “
Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
59
(
4
), pp.
R2514
R2516
.
22.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tománek
,
D.
,
2000
, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
20
), pp.
4613
4616
.
23.
Kuang
,
Y.
, and
Huang
,
B.
,
2015
, “
Effects of Covalent Functionalization on the Thermal Transport in Carbon Nanotube/Polymer Composites: A Multi-Scale Investigation
,”
Polymer
,
56
, pp.
563
571
.
24.
De Volder
,
M.
,
Tawfick
,
S.
,
Baughman
,
R.
, and
Hart
,
A.
,
2013
, “
Carbon Nanotubes: Present and Future Commercial Applications
,”
Science
,
339
(
6119
), pp.
535
539
.
25.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
, and
Eklund
,
P. C.
,
1996
,
Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications
,
Academic Press
,
San Diego, CA
.
26.
Hu
,
M.
,
Keblinski
,
P.
,
Wang
,
J.-S.
, and
Raravikar
,
N.
,
2008
, “
Interfacial Thermal Conductance Between Silicon and a Vertical Carbon Nanotube
,”
J. Appl. Phys.
,
104
(
8
), p.
083503
.
27.
Bao
,
H.
,
Shao
,
C.
,
Luo
,
S.
, and
Hu
,
M.
,
2014
, “
Enhancement of Interfacial Thermal Transport by Carbon Nanotube-Graphene Junction
,”
J. Appl. Phys.
,
115
(
5
), p.
053524
.
28.
Diao
,
J.
,
Srivastava
,
D.
, and
Menon
,
M.
,
2008
, “
Molecular Dynamics Simulations of Carbon Nanotube/Silicon Interfacial Thermal Conductance
,”
J. Chem. Phys.
,
128
(
16
), p.
164708
.
29.
Veedu
,
V. P.
,
Cao
,
A.
,
Li
,
X.
,
Ma
,
K.
,
Soldano
,
C.
,
Kar
,
S.
,
Ajayan
,
P. M.
, and
Ghasemi-Nejhad
,
M. N.
,
2006
, “
Multifunctional Composites Using Reinforced Laminae With Carbon-Nanotube Forests
,”
Nat. Mater.
,
5
(
6
), pp.
457
462
.
30.
Minus
,
M. L.
,
Chae
,
H. G.
, and
Kumar
,
S.
,
2012
, “
Polyethylene Crystallization Nucleated by Carbon Nanotubes Under Shear
,”
ACS Appl. Mater. Interfaces
,
4
(
1
), pp.
326
330
.
31.
Yu
,
K.
,
Lee
,
J. M.
,
Kim
,
J.
,
Kim
,
G.
,
Kang
,
H.
,
Park
,
B.
,
Ho Kahng
,
Y.
,
Kwon
,
S.
,
Lee
,
S.
,
Lee
,
B. H.
,
Park
,
H. I.
,
Kim
,
S. O.
, and
Lee
,
K.
,
2014
, “
Semiconducting Polymers With Nanocrystallites Interconnected Via Boron-Doped Carbon Nanotubes
,”
Nano Lett.
,
14
(
12
), pp.
7100
7106
.
32.
Jin
,
C.
,
Suenaga
,
K.
, and
Iijima
,
S.
,
2008
, “
Plumbing Carbon Nanotubes
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
17
21
.
33.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
34.
Tersoff
,
J.
,
1989
, “
Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems
,”
Phys. Rev. B
,
39
(
8
), pp.
5566
5568
.
35.
Tersoff
,
J.
,
1994
, “
Chemical Order in Amorphous Silicon Carbide
,”
Phys. Rev. B
,
49
(
23
), p.
16349
.
36.
Maruyama
,
S.
,
2002
, “
A Molecular Dynamics Simulation of Heat Conduction in Finite Length SWNTs
,”
Physica B
,
323
(
1–4
), pp.
193
195
.
37.
Zhang
,
G.
, and
Li
,
B.
,
2005
, “
Thermal Conductivity of Nanotubes Revisited: Effects of Chirality, Isotope Impurity, Tube Length, and Temperature
,”
J. Chem. Phys.
,
123
(
11
), p.
114714
.
38.
Cui
,
L.
,
Feng
,
Y.
,
Tan
,
P.
, and
Zhang
,
X.
,
2015
, “
Heat Conduction in Double-Walled Carbon Nanotubes With Intertube Additional Carbon Atoms
,”
Phys. Chem. Chem. Phys.
,
17
(
25
), pp.
16476
16482
.
You do not currently have access to this content.