Near-field thermophotovoltaic (NFTPV) devices have received much attention lately as an alternative energy harvesting system, whereby a heated emitter exchanges super-Planckian thermal radiation with a photovoltaic (PV) cell to generate electricity. This work describes the use of a grating structure to enhance the power throughput of NFTPV devices, while increasing the energy conversion efficiency by ensuring that a large portion of the radiation entering the PV cell is above the band gap. The device contains a high-temperature tungsten grating that radiates photons to a room-temperature In0.18Ga0.82Sb PV cell through a vacuum gap of several tens of nanometers. Scattering theory is used along with the rigorous coupled-wave analysis (RCWA) to calculate the radiation energy exchange between the grating emitter and the TPV cell. A parametric study is performed by varying the grating depth, period, and ridge width in the range that can be fabricated using available fabrication technologies. It is found that the power output can be increased by 40% while improving the efficiency from 29.9% to 32.0% with a selected grating emitter as compared to the case of a flat tungsten emitter. Reasons for the enhancement are found to be due to the enhanced energy transmission coefficient close to the band gap. This work shows a possible way of improving NFTPV and sheds light on how grating structures interact with thermal radiation at the nanoscale.

References

References
1.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
2.
Xuan
,
Y.
,
2014
, “
An Overview of Micro/Nanoscaled Thermal Radiation and Its Applications
,”
Photonics Nanostruct. Fundam. Appl.
,
12
(
2
), pp.
93
113
.
3.
Liu
,
X. L.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2015
, “
Near-Field Thermal Radiation: Recent Progress and Outlook
,”
Nanoscale Microscale Thermophys. Eng.
,
19
(
2
), pp.
98
126
.
4.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
,
King
,
W. P.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Phillpot
,
S. R.
,
Pop
,
E.
, and
Shi
,
L.
,
2014
, “
Nanoscale Thermal Transport: II. 2003–2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
011305
.
5.
Biehs
,
S.-A.
,
Ben-Abdallah
,
P.
, and
Rosa
,
F. S.
,
2012
, “
Nanoscale Radiative Heat Transfer and Its Applications
,”
Infrared Radiation
,
V.
Morozhenko
, ed.,
InTech
,
Rijeka, Croatia
, Chap. 1.
6.
Rytov
,
S. M.
,
Kravtsov
,
Y. A.
, and
Tatarskii
,
V. I.
,
1989
,
Principles of Statistical Radiophysics
,
Springer
,
New York
.
7.
Kittel
,
A.
,
Muller-Hirsch
,
W.
,
Parisi
,
J.
,
Biehs
,
S.-A.
,
Reddig
,
D.
, and
Holthaus
,
M.
,
2005
, “
Near-Field Heat Transfer in a Scanning Thermal Microscope
,”
Phys. Rev. Lett.
,
95
(
22
), p.
224301
.
8.
Rousseau
,
E.
,
Siria
,
A.
,
Jourdan
,
G.
,
Volz
,
S.
,
Comin
,
F.
,
Chevrier
,
J.
, and
Greffet
,
J.-J.
,
2009
, “
Radiative Heat Transfer at the Nanoscale
,”
Nat. Photonics
,
3
(
9
), pp.
514
517
.
9.
Shen
,
S.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2009
, “
Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps
,”
Nano Lett.
,
9
(
8
), pp.
2909
2913
.
10.
Song
,
B.
,
Ganjeh
,
Y.
,
Sadat
,
S.
,
Thompson
,
D.
,
Fiorino
,
A.
,
Fernández-Hurtado
,
V.
,
Feist
,
J.
,
Garcia-Vidal
,
F. J.
,
Cuevas
,
J. C.
,
Reddy
,
P.
, and
Meyhofer
,
E.
,
2015
, “
Enhancement of Near-Field Radiative Heat Transfer Using Polar Dielectric Thin Films
,”
Nat. Nanotechnol.
,
10
(
3
), pp.
253
258
.
11.
St-Gelais
,
R.
,
Guha
,
B.
,
Zhu
,
L.
,
Fan
,
S.
, and
Lipson
,
M.
,
2014
, “
Demonstration of Strong Near-Field Radiative Heat Transfer Between Integrated Nanostructures
,”
Nano Lett.
,
14
(
12
), pp.
6971
6975
.
12.
Lim
,
M.
,
Lee
,
S. S.
, and
Lee
,
B. J.
,
2015
, “
Near-Field Thermal Radiation Between Doped Silicon Plates at Nanoscale Gaps
,”
Phys. Rev. B
,
91
(
19
), p.
195136
.
13.
Basu
,
S.
,
Chen
,
Y.-B.
, and
Zhang
,
Z. M.
,
2007
, “
Microscale Radiation in Thermophotovoltaic Devices: A Review
,”
Int. J. Energy Res.
,
31
(6–7), pp.
689
716
.
14.
Park
,
K.
,
Basu
,
S.
,
King
,
W. P.
, and
Zhang
,
Z. M.
,
2008
, “
Performance Analysis of Near-Field Thermophotovoltaic Devices Considering Absorption Distribution
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
2
), pp.
305
316
.
15.
Francoeur
,
M.
,
Vaillon
,
R.
, and
Mengüç
,
M. P.
,
2011
, “
Thermal Impacts on the Performance of Nanoscale-Gap Thermophotovoltaic Power Generators
,”
IEEE Trans. Energy Convers.
,
26
(
2
), pp.
686
698
.
16.
Laroche
,
M.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
,
2006
, “
Near-Field Thermophotovoltaic Energy Conversion
,”
J. Appl. Phys.
,
100
(
6
), p.
063704
.
17.
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2003
, “
Surface Modes for Near Field Thermophotovoltaics
,”
Appl. Phys. Lett.
,
82
(
20
), pp.
3544
3546
.
18.
Dimatteo
,
R. S.
,
Greiff
,
P.
,
Finberg
,
S. L.
,
Young-Waithe
,
K. A.
,
Choy
,
H. K. H.
,
Masaki
,
M. M.
, and
Fonstad
,
C. G.
,
2001
, “
Enhanced Photogeneration of Carriers in a Semiconductor Via Coupling Across a Nonisothermal Nanoscale Vacuum Gap
,”
Appl. Phys. Lett.
,
79
(
12
), pp.
1894
1896
.
19.
Yang
,
W.
,
Chou
,
S.
,
Shu
,
C.
,
Xue
,
H.
,
Li
,
Z.
,
Li
,
D.
, and
Pan
,
J.
,
2003
, “
Microscale Combustion Research for Application to Micro Thermophotovoltaic Systems
,”
Energy Convers. Manage.
,
44
(
16
), pp.
2625
2634
.
20.
Bermel
,
P.
,
Ghebrebrhan
,
M.
,
Chan
,
W.
,
Yeng
,
Y. X.
,
Araghchini
,
M.
,
Hamam
,
R.
,
Marton
,
C. H.
,
Jensen
,
K. F.
,
Soljačić
,
M.
, and
Joannopoulos
,
J. D.
,
2010
, “
Design and Global Optimization of High-Efficiency Thermophotovoltaic Systems
,”
Opt. Express
,
18
(S3), pp.
A314
A334
.
21.
Datas
,
A.
,
2015
, “
Optimum Semiconductor Bandgaps in Single Junction and Multijunction Thermophotovoltaic Converters
,”
Sol. Energy Mater. Sol. Cells
,
134
, pp.
275
290
.
22.
Greffet
,
J.-J.
,
Carminati
,
R.
,
Joulain
,
K.
,
Mulet
,
J.-P.
,
Mainguy
,
S.
, and
Chen
,
Y.
,
2002
, “
Coherent Emission of Light by Thermal Sources
,”
Nature
,
416
(
6876
), pp.
61
64
.
23.
Wang
,
H.
,
Yang
,
Y.
, and
Wang
,
L. P.
,
2014
, “
Switchable Wavelength-Selective and Diffuse Metamaterial Absorber/Emitter With a Phase Transition Spacer Layer
,”
Appl. Phys. Lett.
,
105
(
7
), p.
071907
.
24.
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2014
, “
Study of Magnetic Polaritons in Deep Gratings for Thermal Emission Control
,”
J. Quant. Spectrosc. Radiat. Transfer
,
135
, pp.
81
89
.
25.
Liu
,
X. L.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2013
, “
Wideband Tunable Omnidirectional Infrared Absorbers Based on Doped-Silicon Nanowire Arrays
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061602
.
26.
Lee
,
B. J.
,
Chen
,
Y.-B.
,
Han
,
S.
,
Chiu
,
F.-C.
, and
Lee
,
H. J.
,
2014
, “
Wavelength-Selective Solar Thermal Absorber With Two-Dimensional Nickel Gratings
,”
ASME J. Heat Transfer
,
136
(
7
), p.
072702
.
27.
Rephaeli
,
E.
, and
Fan
,
S.
,
2009
, “
Absorber and Emitter for Solar Thermo-Photovoltaic Systems to Achieve Efficiency Exceeding the Shockley-Queisser Limit
,”
Opt. Express
,
17
(
17
), pp.
15145
15159
.
28.
Lenert
,
A.
,
Bierman
,
D. M.
,
Nam
,
Y.
,
Chan
,
W. R.
,
Celanović
,
I.
,
Soljačić
,
M.
, and
Wang
,
E. N.
,
2014
, “
A Nanophotonic Solar Thermophotovoltaic Device
,”
Nat. Nanotechnol.
,
9
(
2
), pp.
126
130
.
29.
Wu
,
C.
,
Neuner
,
B.
, III
,
John
,
J.
,
Milder
,
A.
,
Zollars
,
B.
,
Savoy
,
S.
, and
Shvets
,
G.
,
2012
, “
Metamaterial-Based Integrated Plasmonic Absorber/Emitter for Solar Thermo-Photovoltaic Systems
,”
J. Opt.
,
14
(
2
), p.
024005
.
30.
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2012
, “
Wavelength-Selective and Diffuse Emitter Enhanced by Magnetic Polaritons for Thermophotovoltaics
,”
Appl. Phys. Lett.
,
100
(
6
), p.
063902
.
31.
Yeng
,
Y. X.
,
Chan
,
W. R.
,
Rinnerbauer
,
V.
,
Joannopoulos
,
J. D.
,
Soljačić
,
M.
, and
Celanovic
,
I.
,
2013
, “
Performance Analysis of Experimentally Viable Photonic Crystal Enhanced Thermophotovoltaic Systems
,”
Opt. Express
,
21
(S6), pp.
A1035
A1051
.
32.
Kohiyama
,
A.
,
Shimizu
,
M.
,
Kobayashi
,
H.
,
Iguchi
,
F.
, and
Yugami
,
H.
,
2014
, “
Spectrally Controlled Thermal Radiation Based on Surface Microstructures for High-Efficiency Solar Thermophotovoltaic System
,”
Energy Procedia
,
57
, pp.
517
523
.
33.
Zhao
,
B.
,
Wang
,
L. P.
,
Shuai
,
Y.
, and
Zhang
,
Z. M.
,
2013
, “
Thermophotovoltaic Emitters Based on a Two-Dimensional Grating/Thin-Film Nanostructure
,”
Int. J. Heat Mass Transfer
,
67
, pp.
637
645
.
34.
Bernardi
,
M. P.
,
Dupré
,
O.
,
Blandre
,
E.
,
Chapuis
,
P.-O.
,
Vaillon
,
R.
, and
Francoeur
,
M.
,
2015
, “
Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-Gap Thermophotovoltaic Power Generators
,”
Sci. Rep.
,
5
, p.
011626
.
35.
Bright
,
T. J.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2014
, “
Performance of Near-Field Thermophotovoltaic Cells Enhanced With a Backside Reflector
,”
ASME J. Heat Transfer
,
136
(
6
), p.
062701
.
36.
Tong
,
J. K.
,
Hsu
,
W.-C.
,
Huang
,
Y.
,
Boriskina
,
S. V.
, and
Chen
,
G.
,
2015
, “
Thin-Film ‘Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics
,”
Sci. Rep.
,
5
, p.
010661
.
37.
Messina
,
R.
, and
Ben-Abdallah
,
P.
,
2013
, “
Graphene-Based Photovoltaic Cells for Near-Field Thermal Energy Conversion
,”
Sci. Rep.
,
3
, p.
001383
.
38.
Ilic
,
O.
,
Jablan
,
M.
,
Joannopoulos
,
J. D.
,
Celanovic
,
I.
, and
Soljačić
,
M.
,
2012
, “
Overcoming the Black Body Limit in Plasmonic and Graphene Near-Field Thermophotovoltaic Systems
,”
Opt. Express
,
20
(S3), pp.
A366
A384
.
39.
Chang
,
J.-Y.
,
Yang
,
Y.
, and
Wang
,
L. P.
,
2015
, “
Tungsten Nanowire Based Hyperbolic Metamaterial Emitters for Near-Field Thermophotovoltaic Applications
,”
Int. J. Heat Mass Transfer
,
87
, pp.
237
247
.
40.
Rodriguez
,
A. W.
,
Ilic
,
O.
,
Bermel
,
P.
,
Celanovic
,
I.
,
Joannopoulos
,
J. D.
,
Soljačić
,
M.
, and
Johnson
,
S. G.
,
2011
, “
Frequency-Selective Near-Field Radiative Heat Transfer Between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials
,”
Phys. Rev. Lett.
,
107
(
11
), p.
114302
.
41.
Liu
,
X. L.
, and
Zhang
,
Z. M.
,
2015
, “
Near-Field Thermal Radiation Between Metasurfaces
,”
ACS Photonics
,
2
(
9
), p.
1320
.
42.
Guérout
,
R.
,
Lussange
,
J.
,
Rosa
,
F. S. S.
,
Hugonin
,
J. P.
,
Dalvit
,
D. A. R.
,
Greffet
,
J.-J.
,
Lambrecht
,
A.
, and
Reynaud
,
S.
,
2012
, “
Enhanced Radiative Heat Transfer Between Nanostructured Gold Plates
,”
Phys. Rev. B
,
85
(
18
), p.
180301
.
43.
Lussange
,
J.
,
Guérout
,
R.
,
Rosa
,
F. S. S.
,
Greffet
,
J.-J.
,
Lambrecht
,
A.
, and
Reynaud
,
S.
,
2012
, “
Radiative Heat Transfer Between Two Dielectric Nanogratings in the Scattering Approach
,”
Phys. Rev. B
,
86
(
8
), p.
085432
.
44.
Liu
,
X. L.
, and
Zhang
,
Z. M.
,
2014
, “
Graphene-Assisted Near-Field Radiative Heat Transfer Between Corrugated Polar Materials
,”
Appl. Phys. Lett.
,
104
(
25
), p.
251911
.
45.
Palik
,
E. D.
, ed.,
1998
,
Handbook of Optical Constants of Solids
, Vol.
1
,
Academic Press
,
San Diego, CA
.
46.
González-Cuevas
,
J. A.
,
Refaat
,
T. F.
,
Abedin
,
M. N.
, and
Elsayed-Ali
,
H. E.
,
2006
, “
Modeling of the Temperature-Dependent Spectral Response of In1-xGaxSb Infrared Photodetectors
,”
Opt. Eng.
,
45
(4), p.
044001
.
47.
Liu
,
X. L.
, and
Zhang
,
Z. M.
,
2015
, “
Giant Enhancement of Nanoscale Thermal Radiation Based on Hyperbolic Graphene Plasmons
,”
Appl. Phys. Lett.
,
107
(
14
), p.
143114
.
48.
Lambrecht
,
A.
, and
Marachevsky
,
V. N.
,
2008
, “
Casimir Interaction of Dielectric Gratings
,”
Phys. Rev. Lett.
,
101
(
16
), p.
160403
.
49.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
,
1976
,
Solid State Physics
,
Holt, Rinehart and Winston
,
New York
.
50.
Liu
,
X. L.
,
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2015
, “
Enhanced Near-Field Thermal Radiation and Reduced Casimir Stiction Between Doped-Si Gratings
,”
Phys. Rev. A
,
91
(
6
), p.
062510
.
51.
Joulain
,
K.
,
Mulet
,
J.-P.
,
Marquier
,
F.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
,
2005
, “
Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces Revisited in the Near Field
,”
Surf. Sci. Rep.
,
57
(3–4), pp.
59
112
.
52.
Watjen
,
J. I.
,
Bright
,
T. J.
,
Zhang
,
Z. M.
,
Muratore
,
C.
, and
Voevodin
,
A. A.
,
2013
, “
Spectral Radiative Properties of Tungsten Thin Films
,”
Int. J. Heat Mass Transfer
,
61
, pp.
106
113
.
53.
Basu
,
S.
, and
Zhang
,
Z. M.
,
2009
, “
Maximum Energy Transfer in Near-Field Thermal Radiation at Nanometer Distances
,”
J. Appl. Phys.
,
105
(
9
), p.
093535
.
54.
Liu
,
B.
,
Shi
,
J.
,
Liew
,
K.
, and
Shen
,
S.
,
2014
, “
Near-Field Radiative Heat Transfer for Si Based Metamaterials
,”
Opt. Commun.
,
314
, pp.
57
65
.
55.
Liu
,
X. L.
,
Bright
,
T. J.
, and
Zhang
,
Z. M.
,
2014
, “
Application Conditions of Effective Medium Theory in Near-Field Radiative Heat Transfer Between Multilayered Metamaterials
,”
ASME J. Heat Transfer
,
136
(
9
), p.
092703
.
You do not currently have access to this content.