The present work aims at investigating a new challenging use of aluminum oxide (Al2O3) nanoparticles to enhance the thermal properties (thermal conductivity, specific heat, and latent heat) of pure paraffin waxes to obtain a new class of phase change materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding 0.5 and 1.0 wt  % of Al2O3 nanoparticles in two paraffin waxes having melting temperatures of 45 and 55 °C, respectively. The thermophysical properties such as specific heat, latent heat, and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCMs. Furthermore, a numerical comparison between the use of the pure paraffin waxes and the nano-PCMs obtained in a typical electronics passive cooling device was developed and implemented. A numerical model is accomplished to simulate the heat transfer inside the cavity either with PCM or nano-PCM. Numerical simulations were carried out using the ansys-fluent 15.0 code. Results in terms of solid and liquid phase fractions and temperatures and melting time were reported and discussed. They showed that the nano-PCMs determine a delay in the melting process with respect to the pure PCMs.

References

References
1.
Reay
,
D. A.
,
Kew
,
P. A.
, and
McGlen
,
R. J.
,
2014
,
Heat Pipes Theory, Design and Applications
,
6th ed.
,
Butterworth–Heinemann
,
Oxford, UK
, pp.
207
225
.
2.
Mancin
,
S.
,
Diani
,
A.
,
Doretti
,
L.
,
Hooman
,
K.
, and
Rossetto
,
L.
,
2015
, “
Experimental Analysis of Phase Change Phenomenon of Paraffin Waxes Embedded in Copper Foams
,”
Int. J. Therm. Sci.
,
90
, pp.
79
89
.
3.
Zalba
,
B.
,
Marìn
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
4.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
5.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
615
628
.
6.
Jegadheeswaran
,
S.
, and
Pohekar
,
S. D.
,
2009
, “
Performance Enhancement in Latent Heat Thermal Storage System: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2225
2244
.
7.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.
8.
Baby
,
R.
, and
Balaji
,
C.
,
2012
, “
Experimental Investigations on Phase Change Material Based Finned Heat Sinks for Electronic Equipment Cooling
,”
Int. J. Heat Mass Transfer
,
55
(5–6), pp.
1642
1649
.
9.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Thermal Optimization of PCM Based Pin Fin Heat Sinks: An Experimental Study
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
65
77
.
10.
Baby
,
R.
, and
Balaji
,
C.
,
2014
, “
Thermal Performance of a PCM Heat Sink Under Different Heat Loads: An Experimental Study
,”
Int. J. Therm. Sci.
,
79
, pp.
240
249
.
11.
Fan
,
L. W.
,
Xiao
,
Y. Q.
,
Zeng
,
Y.
,
Fang
,
X.
,
Wang
,
X.
,
Xu
,
X.
,
Yu
,
Z. T.
,
Hong
,
R. H.
,
Hu
,
Y. C.
, and
Cen
,
K. F.
,
2013
, “
Effects of Melting Temperature and the Presence of Internal Fins on the Performance of a Phase Change Material (PCM)-Based Heat Sink
,”
Int. J. Therm. Sci.
,
70
, pp.
114
126
.
12.
Mahmoud
,
S.
,
Tang
,
A.
,
Toh
,
C.
,
AL-Dadah
,
R.
, and
Soo
,
S. L.
,
2013
, “
Experimental Investigation of Inserts Configurations and PCM Type on the Thermal Performance of PCM Based Heat Sinks
,”
Appl. Energy
,
112
, pp.
1349
1356
.
13.
Hong
,
S. T.
, and
Herling
,
D. R.
,
2006
, “
Open-Cell Aluminum Foams Filled With Phase Change Materials as Compact Heat Sinks
,”
Scr. Mater.
,
55
(
10
), pp.
887
890
.
14.
Mesalhy
,
O.
,
Lafdi
,
K.
, and
Elgafy
,
A.
,
2006
, “
Carbon Foam Matrices Saturated With PCM for Thermal Protection Purposes
,”
Carbon
,
44
(
10
), pp.
2080
2088
.
15.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tian
,
Y.
,
2010
, “
Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded Within Phase Change Materials (PCMs)
,”
Sol. Energy
,
84
(
8
), pp.
1402
1412
.
16.
Zhoua
,
D.
, and
Zhao
,
C. Y.
,
2011
, “
Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
970
977
.
17.
Kibria
,
M. A.
,
Anisur
,
M. R.
,
Mahfuz
,
M. H.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2015
, “
A Review on Thermophysical Properties of Nanoparticle Dispersed Phase Change Materials
,”
Energy Convers. Manage.
,
95
, pp.
69
89
.
18.
Khodadadi
,
J. M.
, and
Hosseinizadeh
,
S. F.
,
2007
, “
Nanoparticle-Enhanced Phase Change Materials (NEPCM) With Great Potential for Improved Thermal Energy Storage
,”
Int. Commun. Heat Mass Transfer
,
34
(
5
), pp.
534
543
.
19.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhanced Specific Heat of Silica Nanofluid
,”
ASME J. Heat Transfer
,
133
(
2
), p.
024501
.
20.
Chieruzzi
,
M.
,
Cerritelli
,
G. F.
,
Miliozzi
,
A.
, and
Kenny
,
J. M.
,
2013
, “
Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage
,”
Nanoscale Res. Lett.
,
8
(
1
), p.
448
.
21.
Zhichao
,
L.
,
Qiang
,
Z.
, and
Gaohui
,
W.
,
2015
, “
Preparation and Enhanced Heat Capacity of Nano-Titania Doped Erythritol as Phase Change Material
,”
Int. J. Heat Mass Transfer
,
80
, pp.
653
659
.
22.
Jiang
,
X.
,
Luo
,
R.
,
Peng
,
F.
,
Fang
,
Y.
,
Akiyama
,
T.
, and
Wang
,
S.
,
2015
, “
Synthesis, Characterization and Thermal Properties of Paraffin Microcapsules Modified With Nano-Al2O3
,”
Appl. Energy
,
137
, pp.
731
737
.
23.
Karkri
,
M.
,
Lachheb
,
M.
,
Nógellovác
,
Z.
,
Boh
,
B.
,
Sumiga
,
B.
,
AlMaadeed
,
M. A.
,
Fethi
,
A.
, and
Krupa
,
I.
,
2015
, “
Thermal Properties of Phase-Change Materials Based on High-Density Polyethylene Filled With Micro-Encapsulated Paraffin Wax for Thermal Energy Storage
,”
Energy Build.
,
88
, pp.
144
152
.
24.
He
,
Q.
,
Wang
,
S.
,
Tong
,
M.
, and
Liu
,
Y.
,
2012
, “
Experimental Study on Thermophysical Properties of Nanofluids as Phase-Change Material (PCM) in Low Temperature Cool Storage
,”
Energy Convers. Manage.
,
64
, pp.
199
205
.
25.
Wang
,
J.
,
Xie
,
H.
,
Guo
,
Z.
,
Guan
,
L.
, and
Li
,
Y.
,
2014
, “
Improved Thermal Properties of Paraffin Wax by the Addition of TiO2 Nanoparticles
,”
Appl. Therm. Eng.
,
73
(
2
), pp.
1541
1547
.
26.
Shaikh
,
S.
,
Lafdi
,
K.
, and
Hallinan
,
K.
,
2008
, “
Carbon Nanoadditives to Enhance Latent Energy Storage of Phase Change Materials
,”
J. Appl. Phys.
,
103
(
9
), p.
094302
.
27.
Colla
,
L.
,
Fedele
,
L.
,
Mancin
,
S.
,
Danza
,
L.
, and
Manca
,
O.
,
2017
, “
Nano-PCMs for Enhanced Energy Storage and Passive Cooling Applications
,”
Appl. Therm. Eng.
,
110
, pp.
584
589
.
28.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.
29.
Hosseini
,
S. M. J.
,
Ranjbar
,
A. A.
,
Sedighi
,
K.
, and
Rahimi
,
M.
,
2013
, “
Melting of Nanoparticle-Enhanced Phase Change Material Inside Shell and Tube Heat Exchanger
,”
J. Engineering
,
2013
, p.
784681
.
30.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2014
, “
Computational Studies on Metal Foam and Heat Pipe Enhanced Latent Thermal Energy Storage
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051503
.
31.
Al-Abidi
,
A.
,
Bin Mat
,
S.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammed
,
A. T.
,
2013
, “
CFD Applications for Latent Heat Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
353
363
.
32.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2005
, “
A Two-Temperature Model for Solid–Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
995
1004
.
You do not currently have access to this content.