This paper presents a theoretical and numerical study on the heat conduction of gas confined in a cuboid nanopore, in which there exists a temperature difference between the top and bottom walls and the side walls are adiabatic. A modified gas mean free path in confined space is proposed by considering the impact of collisions between molecules and solid surfaces, with which an effective thermal conductivity model of gas in the transition regime is derived. A direct simulation Monte Carlo (DSMC) study on the heat conduction of argon and helium in a cuboid nanopore is carried out to validate the present model. The influences of the Knudsen number and the treatments of boundary conditions on the heat conduction and effective thermal conductivity of gas in nanopores are studied. The temperature jumps and the reduction of heat flux near side walls are analyzed.

References

References
1.
Li
,
Y. H.
,
Li
,
Z. Y.
, and
Tao
,
W. Q.
,
2014
, “
An Ideal Nano-Porous Insulation Material: Design, Modeling and Numerical Validation
,”
Appl. Therm. Eng.
,
72
(
1
), pp.
34
40
.
2.
Gao
,
T.
,
Jelle
,
B. P.
,
Sandberg
,
L. I. C.
, and
Gustavsen
,
A.
,
2013
, “
Monodisperse Hollow Silica Nanospheres for Nano Insulation Materials: Synthesis, Characterization, and Life Cycle Assessment
,”
ACS Appl. Mater. Interface
,
5
(
3
), pp.
761
767
.
3.
Masters
,
N. D.
,
Ye
,
W.
, and
King
,
W. P.
,
2005
, “
The Impact of Subcontinuum Gas Conduction on Topography Measurement Sensitivity Using Heated Atomic Force Microscope Cantilevers
,”
Phys. Fluids
,
17
(
10
), p.
100615
.
4.
Liu
,
B.
,
Yu
,
S.
,
Zhang
,
M.
,
Gonzaga
,
L.
,
Li
,
H.
,
Liu
,
J.
, and
Ma
,
Y.
,
2007
, “
Air-Bearing Design Towards Highly Stable Head–Disk Interface at Ultralow Flying Height
,”
IEEE Trans. Magn.
,
43
(
2
), pp.
715
720
.
5.
Fu
,
Y.
,
Nabiollahi
,
N.
,
Wang
,
T.
,
Wang
,
S.
,
Hu
,
Z.
,
Carlberg
,
B.
,
Zhang
,
Y.
,
Wang
,
X.
, and
Liu
,
J.
,
2012
, “
A Complete Carbon-Nanotube-Based On-Chip Cooling Solution With Very High Heat Dissipation Capacity
,”
Nanotechnology
,
23
(
4
), p.
045304
.
6.
Zhang
,
S.
, and
Bogy
,
D. B.
,
1999
, “
A Heat Transfer Model for Thermal Fluctuations in a Thin Slider/Disk Air Bearing
,”
Int. J. Heat Mass Transfer
,
42
(
10
), pp.
1791
1800
.
7.
Ju
,
Y.
,
2000
, “
Thermal Conduction and Viscous Heating in Microscale Couette Flows
,”
ASME. J. Heat Transfer
,
122
(
4
), pp.
817
818
.
8.
Zhou
,
W. D.
,
Liu
,
B.
,
Yu
,
S. K.
, and
Hua
,
W.
,
2010
, “
Rarefied-Gas Heat Transfer in Micro- and Nanoscale Couette Flows
,”
Phys. Rev. E
,
81
(
1
), p.
011204
.
9.
Denpoh
,
K.
,
1988
, “
Modeling of Rarefied Gas Heat Conduction Between Wafer and Susceptor
,”
IEEE Trans. Semicond. Manuf.
,
11
(
1
), pp.
25
29
.
10.
Zhu
,
T.
, and
Ye
,
W.
,
2010
, “
Theoretical and Numerical Studies of Noncontinuum Gas-Phase Heat Conduction in Micro/Nano Devices
,”
Numer. Heat Transfer B
,
57
(
3
), pp.
203
226
.
11.
Shan
,
X.
, and
Wang
,
M.
,
2013
, “
Understanding of Thermal Conductance of Thin Gas Layers
,”
Adv. Mech. Eng.
,
2013
, pp.
1
7
.
12.
Strapasson
,
J. L.
, and
Sharipov
,
F.
,
2014
, “
Ab Initio Simulation of Heat Transfer Through a Mixture of Rarefied Gases
,”
Int. J. Heat Mass Transfer
,
71
, pp.
91
97
.
13.
Calvert
,
M.
, and
Baker
,
J.
,
1998
, “
Thermal Conductivity and Gaseous Microscale Transport
,”
J. Thermophys. Heat Transfer
,
12
(
2
), pp.
138
145
.
14.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
, pp.
124
125
.
15.
Thomas
,
L. B.
, and
Lord
,
R. G.
,
1974
, “
Comparative Measurement of Tangential Momentum and Thermal Accommodation on Polished and Roughened Steel Spheres
,”
8th International Symposium on Rarefied Gas Dynamics
,
R.
Karamcheti
, ed., New York, Vol.
8
, pp.
405
412
.
16.
Sun
,
J.
, and
Li
,
Z. X.
,
2011
, “
Three-Dimensional Molecular Dynamic Study on Accommodation Coefficients in Rough Nanochannels
,”
Heat Transfer Eng.
,
32
(
7–8
), pp.
658
666
.
17.
Shen
,
C.
,
2006
,
Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows
,
Springer Science & Business Media
,
Berlin
, pp.
138
140
.
18.
Zeng
,
S. Q.
,
Hunt
,
A.
, and
Greif
,
R.
,
1995
, “
Mean Free Path and Apparent Thermal Conductivity of a Gas in a Porous Medium
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
758
761
.
19.
He
,
Y. L.
, and
Xie
,
T.
,
2015
, “
Advances of Thermal Conductivity Models of Nanoscale Silica Aerogel Insulation Material
,”
Appl. Therm. Eng.
,
81
, pp.
28
50
.
20.
Wei
,
G.
,
Liu
,
Y.
,
Du
,
X.
, and
Zhang
,
X.
,
2012
, “
Gaseous Conductivity Study on Silica Aerogel and Its Composite Insulation Materials
,”
ASME J. Heat Transfer
,
134
(
4
), p.
041301
.
21.
Prabha
,
S. K.
,
Sreehari
,
P. D.
, and
Sathian
,
S. P.
,
2013
, “
The Effect of System Boundaries on the Mean Free Path for Confined Gases
,”
AIP Adv.
,
3
(
10
), p.
102107
.
22.
Hari
,
P. D. S.
,
Prabha
,
S. K.
, and
Sathian
,
S. P.
,
2015
, “
The Effect of Characteristic Length on Mean Free Path for Confined Gases
,”
Physica A
,
437
, pp.
68
74
.
23.
Stops
,
D. W.
,
1970
, “
The Mean Free Path of Gas Molecules in the Transition Regime
,”
J. Phys. D
,
3
(
5
), pp.
685
696
.
24.
Arlemark
,
E. J.
,
Dadzie
,
S. K.
, and
Reese
,
J. M.
,
2010
, “
An Extension to the Navier–Stokes Equations to Incorporate Gas Molecular Collisions With Boundaries
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041006
.
25.
Wu
,
L.
,
2008
A Slip Model for Rarefied Gas Flows at Arbitrary Knudsen Number
,”
Appl. Phys. Lett.
,
93
(
25
), p.
253103
.
26.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarendon Press
,
Oxford, UK
.
27.
Sharipov
,
F.
, and
Strapasson
,
J. L.
,
2012
, “
Direct Simulation Monte Carlo Method for an Arbitrary Intermolecular Potential
,”
Phys. Fluids
,
24
(
1
), p.
11703
.
28.
Venkattraman
,
A.
, and
Alexeenko
,
A. A.
,
2010
, “
Direct Simulation Monte Carlo Modeling of e-Beam Metal Deposition
,”
J. Vac. Sci. Technol. A: Vac. Surf. Films
,
28
(
4
), pp.
1696
1701
.
29.
Huang
,
F.
,
Zhao
,
B.
,
Cheng
,
X. L.
, and
Shen
,
Q.
,
2013
, “
A New Sampling Method of Adiabatic Boundary Condition in DSMC Under Thermodynamic Non-Equilibrium
,”
J. Astron.
,
34
(
11
), pp.
1451
1455
.
You do not currently have access to this content.