This paper attempts to experimentally investigate the influence of channel length on the flow behavior and heat transfer characteristics in circular microchannels. The diameters of the channels were 0.4 mm and the length of them were 5 mm, 10 mm, 15 mm, and 20 mm, respectively. All experiments were performed with air and completed with Reynolds number in the range of 300–2700. Results of the experiments show that the length of microchannels has remarkable effects on the performance of flow behavior and heat transfer characteristics. Both the friction factor and Poiseuille number drop with the increase of channel length, and the experimental values are higher than the theoretical ones. Moreover, the channel length does not influence the value of critical Reynolds number. Nusselt number decrease as the increase of channel length. Larger Nusselt numbers are obtained in shorter channels. The results also indicate that in all cases, the friction factor decreases and the Poiseuille number increases with the increase of the Reynolds number. It is also observed that the value of critical Reynolds number is between 1500 and 1700 in this paper, which is lower than the value of theoretical critical Reynolds number of 2300.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Dev. Lett.
,
2
(
5
), pp.
126
129
.
2.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
,
1991
, “
Fluid Flow and Heat Transfer in Microtubes
,” Proceedings of Winter Annual Meeting of the American Society of Mechanical Engineers, Dec. 1–6, ASME, New York, pp.
123
128
.
3.
Wu
,
P. Y.
, and
Little
,
W. A.
,
1984
, “
Measuring of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers for Micro Miniature Refrigerators
,”
Cryogenics
,
24
(
8
), pp.
415
420
.
4.
Weilin
,
Q.
,
Mala
,
G. M.
, and
Dongqing
,
L.
,
2000
, “
Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
353
364
.
5.
Celata
,
G. P.
,
Cumo
,
M.
,
Guglielmi
,
M.
, and
Zummo
,
G.
,
2002
, “
Experimental Investigation of Hydraulic and Single-Phase Heat Transfer in 0.130-mm Capillary Tube
,”
Microscale Thermophys. Eng.
,
6
(
2
), pp.
85
97
.
6.
Li
,
Z. X.
,
Du
,
D. X.
, and
Guo
,
Z. Y.
,
2003
, “
Experimental Study on Flow Characteristic of Liquid in Circular Microtubes
,”
Microscale Thermophys. Eng.
,
7
(
3
), pp.
253
265
.
7.
Adams
,
T. M.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Qureshi
,
Z. H.
,
1998
, “
An Experimental Investigation of Single-Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(6–7), pp.
851
857
.
8.
Rahman
,
M. M.
, and
Gui
,
F. J.
,
1993
, “
Experimental Measurements of Fluid Flow and Heat Transfer in Microchannel Cooling Passages in a Chip Substrate
,”
Advances in Electronic Packaging
, Vol.
199
,
ASME
,
New York
, pp.
685
692
.
9.
Wang
,
B. X.
, and
Peng
,
X. F.
,
1994
, “
Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels
,”
Int. J. Heat Mass Transfer
,
37
(
Suppl 1
), pp.
73
82
.
10.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Wang
,
B. X.
,
1994
, “
Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels
,”
Exp. Heat Transfer
,
7
(
4
), pp.
249
264
.
11.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
12.
Qu
,
W. L.
,
Mala
,
G. M.
, and
Li
,
D. Q.
,
2000
, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3925
3936
.
13.
Chen
,
C.
,
Teng
,
J. T.
,
Cheng
,
C. H.
,
Jin
,
S.
,
Huang
,
S.
,
Liu
,
C.
,
Lee
,
M. T.
,
Pan
,
H. H.
, and
Greif
,
R.
,
2014
, “
A Study on Fluid Flow and Heat Transfer in Rectangular Microchannels With Various Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
69
, pp.
203
214
.
14.
Warrier
,
G. R.
,
Dhir
,
V. K.
, and
Momoda
,
L. A.
,
2002
, “
Heat Transfer and Pressure Drop in Narrow Rectangular Channels
,”
Exp. Therm. Fluid Sci.
,
26
(
1
), pp.
53
64
.
15.
Owhaib
,
W.
, and
Palm
,
B.
,
2004
, “
Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannels
,”
Exp. Therm. Fluid Sci.
,
28
(2–3), pp.
105
110
.
16.
Wang
,
G.
,
Hao
,
L.
, and
Cheng
,
P.
,
2009
, “
An Experimental and Numerical Study of Forced Convection in a Microchannel With Negligible Axial Heat Conduction
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
1070
1074
.
17.
Mokrani
,
O.
,
Bourouga
,
B.
,
Castelain
,
C.
, and
Peerhos-Saini
,
H.
,
2009
, “
Fluid Flow and Convective Heat Transfer in Flat Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1337
1352
.
18.
Naphon
,
P.
, and
Khonseur
,
O.
,
2009
, “
Study on the Convective Heat Transfer and Pressure Drop in the Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
36
(
1
), pp.
39
44
.
19.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(17–18), pp.
3060
3067
.
20.
Fu
,
B. R.
,
Lee
,
C. Y.
, and
Pan
,
C.
,
2013
, “
The Effect of Aspect Ratio on Flow Boiling Heat Transfer of HFE-7100 in a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
58
(1–2), pp.
53
61
.
21.
Liu
,
Y. P.
,
Xu
,
G. Q.
,
Sun
,
J. N.
, and
Li
,
H. W.
,
2015
, “
Investigation of the Roughness Effect on Flow Behavior and Heat Transfer Characteristics in Microchannels
,”
Int. J. Heat Mass Transfer
,
83
, pp.
11
20
.
22.
Sara
,
O. N.
,
Barlay Ergu
,
O.
,
Arzutug
,
M. E.
, and
Yapıcı
,
S.
,
2009
, “
Experimental Study of Laminar Forced Convective Mass Transfer and Pressure Drop in Microtubes
,”
Int. J. Therm. Sci.
,
48
(
10
), pp.
1894
1900
.
23.
Ide
,
H.
,
Kimura
,
R.
,
Hashiguchi
,
H.
, and
Kawaji
,
M.
,
2012
, “
Effect of Channel Length on the Gas–Liquid Two-Phase Flow Phenomena in a Microchannel
,”
Heat Transfer Eng.
,
33
(
3
), pp.
225
233
.
24.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.
25.
Rohsenow
,
W. M.
, and
Hartnett
,
J. P.
,
1973
,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
.
26.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
Hoboken, NJ
, pp.
490
515
.
27.
Cole
,
K. D.
, and
Cetin
,
B.
,
2011
, “
The Effect of Axial Conduction on Heat Transfer in a Liquid Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
54
(11–12), pp.
2542
2549
.
You do not currently have access to this content.