Cooling technique in a miniscale heat sink is essential with the development of high-power electronics, such as electronic chip. As heat transfer techniques, jet impingement cooling and convective cooling by roughened surface are commonly adopted. To obtain a good cooling efficiency, the cooling structure within the heat sink should be carefully designed. In the present study, the miniscale heat sink with a feature size of 1–100 mm is setup. Arrangement of the jet impingement and dimple/protrusion surface is designed as heat transfer augmentation approaches. The effect of dimple/protrusion configuration and depth to diameter ratio is discussed. From the result, the heat transfer coefficient h distribution of heat sink surface is demonstrated for each case. The pressure penalty due to the arrangement of roughened structure is evaluated. Also, thermal performance (TP) and performance evaluation plot are adopted as evaluations of cooling performance for each configuration. Comparing all the cases, optimal cooling structure considering the energy-saving performance is obtained for the miniscale heat sink. Referencing the statistics, a new insight has been provided for the design of cooling structure inside the miniscale heat sink.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat-Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
3.
Arik
,
M.
, and
Bunker
,
R. S.
,
2006
, “
Electronics Packaging Cooling: Technologies From Gas Turbine Engine Cooling
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
215
225
.
4.
Moon
,
H. K.
,
O'Connell
,
T.
, and
Glezer
,
B.
,
2000
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
307
313
.
5.
Ligrani
,
P. M.
,
Mahmood
,
G. I.
,
Harrison
,
J. L.
,
Clayton
,
C. M.
, and
Nelson
,
D. L.
,
2001
, “
Flow Structure and Local Nusselt Number Variations in a Channel With Dimples and Protrusions on Opposite Walls
,”
Int. J. Heat Mass Transfer
,
44
(
23
), pp.
4413
4425
.
6.
Mahmood
,
G. I.
,
Sabbagh
,
M. Z.
, and
Ligrani
,
P. M.
,
2001
, “
Heat Transfer in a Channel With Dimples and Protrusions on Opposite Walls
,”
J. Thermophys. Heat Transfer
,
15
(
3
), pp.
275
283
.
7.
Xie
,
G. N.
,
Sunden
,
B.
, and
Wang
,
Q. W.
,
2010
, “
Predictions of Enhanced Heat Transfer of an Internal Blade Tip-Wall With Hemishperical Dimples or Protrusions
,”
ASME J. Turbomach.
,
133
(
4
), pp.
91
100
.
8.
Afanasyev
,
V. N.
,
Chudnovsky
,
Y. P.
,
Leontiev
,
A. I.
, and
Roganov
,
P. S.
,
1993
, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
,
7
(
1
), pp.
1
8
.
9.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmmod
,
G. I.
, and
Hill
,
M. L.
,
2001
, “
Flow Structure Due to Dimple Depressions on a Channel Surface
,”
Phys. Fluids
,
13
(
11
), pp.
3442
3451
.
10.
Xie
,
Y. H.
,
Shen
,
Z. Y.
,
Zhang
,
D.
, and
Lan
,
J. B.
,
2014
, “
Thermal Performance of a Water-Cooled Microchannel Heat Sink With Grooves and Obstacles
,”
ASME J. Electron. Packag.
,
136
(
2
), pp.
1
8
.
11.
Lan
,
J. B.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2012
, “
Flow and Heat Transfer in Microchannels With Dimples and Protrusions
,”
ASME J. Heat Transfer
,
134
(
2
), pp.
1
9
.
12.
Kanokjaruvijit
,
K.
, and
Martunez-Botas
,
R. F.
,
2005
, “
Jet Impingement on a Dimpled Surface With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
161
170
.
13.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2007
, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
63
70
.
14.
Chang
,
S. W.
,
Jan
,
Y. J.
, and
Chang
,
S. F.
,
2006
, “
Heat Transfer of Impinging Jet-Array Over Convex-Dimpled Surface
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3045
3059
.
15.
Chang
,
S. W.
,
Chiou
,
S. F.
, and
Chang
,
S. F.
,
2007
, “
Heat Transfer of Impinging Jet Array Over Convex-Dimpled Surface With Applications to Cooling of Electronic Chipsets
,”
Exp. Therm. Fluid Sci.
,
31
(
7
), pp.
625
640
.
16.
Terekhov
,
V.
,
Kalinina
,
S.
,
Mshvidobadze
,
Y. M.
, and
Sharov
,
K. A.
,
2009
, “
Impingement of an Impact Jet Onto a Spherical Cavity. Flow Structure and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2498
2506
.
17.
Sharif
,
M. A. R.
, and
Mothe
,
K. K.
,
2010
, “
Parametric Study of Turbulent Slot-Jet Impingement Heat Transfer From Concave Cylindrical Surfaces
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
428
442
.
18.
Sharif
,
M. A. R.
, and
Ramirez
,
N. M.
,
2013
, “
Surface Roughness Effects on the Heat Transfer Due to Turbulent Round Jet Impingement on Convex Hemispherical Surfaces
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1026
1037
.
19.
Vanheiningen
,
A. R. P.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
,
1976
, “
Numerical Prediction of Flow Field and Impingement Heat-Transfer Caused by a Laminar Slot Jet
,”
ASME J. Heat Transfer
,
98
(
4
), pp.
654
658
.
20.
Zhang
,
D.
,
Qu
,
H. C.
,
Lan
,
J. B.
,
Chen
,
J.
, and
Xie
,
Y.
,
2013
, “
Flow and Heat Transfer Characteristics of Single Jet Impinging on Protrusioned Surface
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
18
28
.
21.
Bi
,
C.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2013
, “
Heat Transfer Enhancement in Mini-Channel Heat Sinks With Dimples and Cylindrical Grooves
,”
Appl. Therm. Eng.
,
55
(
1–2
), pp.
121
132
.
22.
Lan
,
J. B.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2011
, “
Heat Transfer Enhancement in a Rectangular Channel With the Combination of Ribs, Dimples and Protrusions
,”
ASME
Paper No. GT2011-46031.
23.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2005
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.