The present study presents a concept of biporous metal foam heat sink applicable to electronic cooling. This heat sink has two metal foam layers arranged in parallel along the primary flow direction, with different metal foam thickness, porosity, and pore density for each layer. The forced convective heat transfer in biporous metal foam heat sink is numerically investigated by employing the Forchheimer–Brinkman extended Darcy momentum equation and local thermal nonequilibrium energy equation. The effects of geometrical and morphological parameters on thermal and hydraulic performance are discussed in detail, and the heat transfer enhancement mechanism of biporous metal foam is analyzed. The thermal performance of biporous metal foam heat sink is compared with that of uniform metal foam heat sink. The results show that the thermal resistance of the biporous metal foam heat sink decreases with decrease of top layer metal foam porosity at a fixed bottom metal foam porosity of 0.9. It is seen that the biporous metal foam heat sink can outperform the uniform metal foam heat sink with a proper selection of foam geometrical and morphological parameters, which is attributed to the presence of high velocity gradient at the boundary layer that can enhance the convective heat transfer. The best observed thermal performance of biporous metal foam heat sink is achieved by employing 30 pores per inch (PPI) metal foam at the bottom layer, with a fixed 50 PPI metal foam at the top layer for the porosities of both layers equal to 0.9, and the optimal thickness of the bottom foam layer is about 1 mm.

References

References
1.
Alfieri
,
F.
,
Tiwari
,
M. K.
,
Zinovik
,
I.
,
Poulikakos
,
D.
,
Brunschwiler
,
T.
, and
Michel
,
B.
,
2010
, “
3D Integrated Water Cooling of a Composite Multilayer Stack of Chips
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121402
.
2.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(15–16), pp.
2751
2761
.
3.
Ejlali
,
A.
,
Ejlali
,
A.
,
Hooman
,
K.
, and
Gurgenci
,
H.
,
2009
, “
Application of High Porosity Metal Foams as Air-Cooled Heat Exchangers to High Heat Load Removal Systems
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
674
679
.
4.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.
5.
Zhao
,
C. Y.
, and
Lu
,
T. J.
,
2002
, “
Analysis of Microchannel Heat Sinks for Electronics Cooling
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4857
4869
.
6.
Du
,
Y. P.
,
Qu
,
Z. G.
,
Zhao
,
C. Y.
, and
Tao
,
W. Q.
,
2010
, “
Numerical Study of Conjugated Heat Transfer in Metal Foam Filled Double-Pipe
,”
Int. J. Heat Mass Transfer
,
53
(21–22), pp.
4899
4907
.
7.
Jeng
,
T. M.
,
Tzeng
,
S. C.
, and
Xu
,
R.
,
2014
, “
Experimental Study of Heat Transfer Characteristics in a 180-deg Round Turned Channel With Discrete Aluminum-Foam Blocks
,”
Int. J. Heat Mass Transfer
,
71
, pp.
133
141
.
8.
Chen
,
C. C.
,
Huang
,
P. C.
, and
Hwang
,
H. Y.
,
2013
, “
Enhanced Forced Convective Cooling of Heat Sources by Metal-Foam Porous Layers
,”
Int. J. Heat Mass Transfer
,
58
(1–2), pp.
356
373
.
9.
Hung
,
T. C.
,
Huang
,
Y. X.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance of Porous Microchannel Heat Sink: Effects of Enlarging Channel Outlet
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
86
92
.
10.
Ko
,
K. H.
, and
Anand
,
N. K.
,
2003
, “
Use of Porous Baffles to Enhance Heat Transfer in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
46
(
22
), pp.
4191
4199
.
11.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2009
, “
Sintered Porous Heat Sink for Cooling of High-Powered Microprocessors for Server Applications
,”
Int. J. Heat Mass Transfer
,
52
(9–10), pp.
2289
2299
.
12.
Yang
,
J.
,
Zeng
,
M.
,
Wang
,
Q. W.
, and
Nakayama
,
A.
,
2010
, “
Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels
,”
ASME J. Heat Transfer
,
132
(
5
), p.
051702
.
13.
Wan
,
Z. M.
,
Quo
,
G. Q.
,
Su
,
K. L.
,
Tu
,
Z. K.
, and
Liu
,
W.
,
2012
, “
Experimental Analysis of Flow and Heat Transfer in a Miniature Porous Heat Sink for High Heat Flux Application
,”
Int. J. Heat Mass Transfer
,
55
(15–16), pp.
4437
4441
.
14.
Hung
,
T. C.
,
Huang
,
Y. X.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance Analysis of Porous-Microchannel Heat Sinks With Different Configuration Designs
,”
Int. J. Heat Mass Transfer
,
66
, pp.
235
243
.
15.
Chen
,
K. C.
, and
Wang
,
C. C.
,
2015
, “
Performance Improvement of High Power Liquid-Cooled Heat Sink Via Bi-Porous Metal Foam Arrangement
,”
Appl. Therm. Eng.
,
87
, pp.
41
46
.
16.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
,
3rd ed.
,
Springer
,
New York
.
17.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Fibrous Metal Foams
,” Ph.D. thesis, University of Colorado, Boulder, CO.
18.
Xu
,
H. J.
,
Qu
,
Z. G.
, and
Tao
,
W. Q.
,
2011
, “
Analytical Solution of Forced Convective Heat Transfer in Tubes Partially Filled With Metallic Foam Using the Two-Equation Model
,”
Int. J. Heat Mass Transfer
,
54
(17–18), pp.
3846
3855
.
19.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2003
, “
Thermal Performance of Aluminum-Foam Heat Sinks by Forced Air Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(1), pp.
262
267
.
20.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
21.
Xu
,
H. J.
,
Qu
,
Z. G.
, and
Tao
,
W. Q.
,
2011
, “
Thermal Transport Analysis in Parallel-Plate Channel Filled With Open-Celled Metallic Foams
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
868
873
.
You do not currently have access to this content.