In the present study, the interfacial dynamics of displacement of three-dimensional spherical droplet on a rectangular microchannel wall considering wetting effects are studied. The two-phase lattice Boltzmann Shan−Chen model is used to explore the physics. The main focus of this study is to analyze the effect of wettability, low viscosity ratio, and capillary number on the displacement of spherical droplet subjected to gravitational force on flat as well as grooved surface of the channel wall. The hydrophobic and hydrophilic natures of wettabilities on wall surface are considered to study for viscosity ratio, M1. The results are presented in the form of temporal evolution of wetted length and wetted area for combined viscosity ratios and wettability scenario. In the present study, it is observed that in dynamic droplet displacement, the viscosity ratio and the capillary number play a significant role. It is found that as the viscosity ratio increases, both the wetted area and the wetted length increase and decrease in the case of hydrophilic and hydrophobic wettable walls, respectively. The groove area on the vertical wall tries to entrap fraction of droplet fluid in case of hydrophilic surface of the vertical wall, whereas in hydrophobic case, droplet moves past the groove without entrapment.

References

References
1.
Gunstensen
,
A. K.
,
Rothman
,
D. H.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1991
, “
Lattice Boltzmann Model of Immiscible Fluids
,”
Phys. Rev. A
,
43
(
8
), pp.
4320
4327
.
2.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.
3.
Shan
,
X.
, and
Doolen
,
G.
,
1995
, “
Multicomponent Lattice-Boltzmann Model With Interparticle Interaction
,”
J. Stat. Phys.
,
81
(
4
), pp.
379
393
.
4.
Swift
,
M.
,
Osborn
,
W.
, and
Yeomans
,
J.
,
1995
, “
Lattice Boltzmann Simulation of Nonideal Fluids
,”
Phys. Rev. Lett.
,
75
(
5
), pp.
830
833
.
5.
He
,
X. Y.
,
Chen
,
S. Y.
, and
Zhang
,
R. Y.
,
1999
, “
A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh–Taylor Instability
,”
J. Comput. Phys.
,
152
(
2
), pp.
642
663
.
6.
Zhang
,
J.
,
2011
, “
Lattice Boltzmann Method for Microfluidics: Models and Applications
,”
Microfluid. Nanofluid.
,
10
(
1
), pp.
1
28
.
7.
Fakhari
,
A.
, and
Rahimian
,
M. H.
,
2009
, “
Simulation of Falling Droplet by the Lattice Boltzmann Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
7
), pp.
3046
3055
.
8.
Li
,
Q.
,
He
,
Y. L.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2011
, “
Lattice Boltzmann Modeling of Microchannel Flows in the Transition Flow Regime
,”
Microfluid. Nanofluid.
,
10
(
3
), pp.
607
618
.
9.
Fei
,
K.
,
Chen
,
W. H.
, and
Hong
,
C. W.
,
2008
, “
Microfluidic Analysis of CO2 Bubble Dynamics Using Thermal Lattice-Boltzmann Method
,”
Microfluid. Nanofluid.
,
5
(
1
), pp.
119
129
.
10.
Cho
,
S. C.
,
Wang
,
Y.
, and
Chen
,
K. S.
,
2012
, “
Droplet Dynamics in a Polymer Electrolyte Fuel Cell Gas Flow Channel: Forces, Deformation, and Detachment—I: Theoretical and Numerical Analyses
,”
J. Power Sources
,
206
, pp.
119
128
.
11.
Cho
,
S. C.
,
Wang
,
Y.
, and
Chen
,
K. S.
,
2012
, “
Droplet Dynamics in a Polymer Electrolyte Fuel Cell Gas Flow Channel: Forces, Deformation and Detachment—II: Comparisons of Analytical Solution With Numerical and Experimental Results
,”
J. Power Sources
,
210
, pp.
191
197
.
12.
Hao
,
L.
, and
Cheng
,
P.
,
2010
, “
Lattice Boltzmann Simulations of Water Transport in Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
,
195
(
12
), pp.
3870
3881
.
13.
Dimitrakopoulos
,
P.
, and
Higdon
,
J. J. L.
,
2001
, “
On the Displacement of Three-Dimensional Fluid Droplets Adhering to a Plane Wall in Viscous Pressure-Driven Flows
,”
J. Fluid Mech.
,
435
, pp.
327
350
.
14.
Schleizer
,
A. D.
, and
Bonnecaze
,
R. T.
,
1999
, “
Displacement of a Two-Dimensional Immiscible Droplet Adhering to a Wall in Shear and Pressure-Driven Flows
,”
J. Fluid Mech.
,
383
, pp.
29
54
.
15.
Randive
,
P.
, and
Dalal
,
A.
,
2014
, “
Influence of Viscosity Ratio and Wettability on Droplet Displacement Behavior: A Mesoscale Analysis
,”
Comput. Fluids
,
102
, pp.
15
31
.
16.
Kang
,
Q.
,
Zhang
,
D.
, and
Chen
,
S.
,
2002
, “
Displacement of a Two Dimensional Immiscible Droplet in a Channel
,”
Phys. Fluids
,
14
(
9
), pp.
3203
3214
.
17.
Huang
,
J. J.
,
Shu
,
C.
, and
Chew
,
Y. T.
,
2009
, “
Lattice Boltzmann Study of Droplet Motion Inside a Grooved Channel
,”
Phys. Fluids
,
21
(
2
), p.
022103
.
18.
Son
,
S.
,
Chen
,
L.
,
Derome
,
D.
, and
Carmeliet
,
J.
,
2015
, “
Numerical Study of Gravity-Driven Droplet Displacement on a Surface Using the Pseudopotential Multiphase Lattice Boltzmann Model With High Density Ratio
,”
Comput. Fluids
,
117
, pp.
42
53
.
19.
Wang
,
Q.
,
Li
,
Y.
,
Yu
,
Z.
, and
Guo
,
B.
,
2016
, “
Numerical Simulation of Gravity-Driven Droplet Displacement on an Inclined Micro-Grooved Surface
,”
ASME
Paper No. MNHMT2016-6529.
20.
Kang
,
Q.
,
Zhang
,
D.
, and
Chen
,
S.
,
2005
, “
Displacement of a Three Dimensional Immiscible Droplet in a Channel
,”
J. Fluid Mech.
,
545
, pp.
41
66
.
21.
Mukherjee
,
P. P.
,
Wang
,
C. Y.
, and
Kang
,
Q.
,
2009
, “
Mesoscopic Modeling of Two-Phase Behavior and Flooding Phenomena in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
,
54
(
27
), pp.
6861
6875
.
22.
Martys
,
N. S.
, and
Chen
,
H.
,
1996
, “
Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method
,”
Phys. Rev. E
,
53
(
1
), pp.
743
750
.
23.
Shan
,
X.
, and
Doolen
,
G.
,
1996
, “
Diffusion in a Multicomponent Lattice Boltzmann Equation Model
,”
Phys. Rev. E
,
54
(
4
), pp.
3614
3620
.
24.
Dullien
,
F. A. L.
,
1992
,
Porous Media: Fluid Transport and Pore Structure
,
Academic Press
,
San Diego, CA
.
You do not currently have access to this content.