A formulation of the unit cell model and the corresponding thermal performance analysis for the cross-flow heat exchanger are carried out, with the design goal of dissipating 175 W from a high-power electronic chip in a compact space. A liquid to liquid heat exchanger in the cross-flow arrangement is preferred due to its compact size and high effectiveness. The unit cell model is formulated based on the volume-averaging method to determine the heat transfer coefficient involving two heat exchanging fluids and a solid. The various factors such as channel shape, channel edge length, channel size, and heat exchanger material can be examined based on the unit cell model. The obtained heat transfer coefficients are used for the estimation of the heat exchanger thermal performance based on the effectiveness–number of transfer units (NTU) correlation. To verify the model formulation, the heat and fluid flow over the cross-flow heat exchangers are investigated through the full-field numerical computation. The amount of heat exchanged from the numerical computation is extracted and compared with the predicted results from the unit cell model. A fairly good agreement is obtained between the two approaches. Based on the unit cell model, an aluminum cross heat exchanger with eight channel layers for the hot and cold fluids, 15 channels in each layer with a channel diameter of 2 mm, is able to meet the design target.

References

References
1.
iNEMI, 2013, “
iNEMI Roadmap
,” International Electronics Manufacturing Initiative, Herndon, VA, http://www.inemi.org/inemi-roadmap
2.
Chu
,
R. C.
,
Simons
,
R. E.
,
Ellsworth
,
M. J.
,
Schmidt
,
R. R.
, and
Cozzolino
,
V.
,
2004
, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
568
585
.
3.
Khan
,
N.
,
Yu
,
L. H.
,
Pin
,
T. S.
,
Ho
,
S. W.
,
Kripesh
,
V.
,
Pinjala
,
D.
,
Lau
,
J. H.
, and
Chuan
,
T. K.
,
2013
, “
3-D Packaging With Through-Silicon Via (TSV) for Electrical and Fluidic Interconnections
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(
2
), pp. 221–228.
4.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Joshi
,
Y. K.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Iyer
,
M. K.
,
2005
, “
Fluid Flow and Heat Transfer in Liquid Cooled Foam Heat Sinks for Electronic Packages
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
272
280
.
5.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Joshi
,
Y. K.
,
Wong
,
T. N.
, and
Toh
,
K. C.
,
2007
, “
Development and Characterization of Thermal Enhancement Structures for Single-Phase Liquid Cooling in Microelectronics Systems
,”
Heat Transfer Eng.
,
28
(
12
), pp.
997
1007
.
6.
Han
,
Y.
,
Lau
,
B. L.
,
Zhang
,
H.
, and
Zhang
,
X.
,
2014
, “
Package-Level Si-Based Micro-Jet Impingement Cooling Solution With Multiple Drainage Micro-Trenches
,”
16th IEEE Electronic Packaging Technology Conference
, pp.
330
334
.
7.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Fabian Pease
,
R.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
.
8.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michael
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
9.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
Hoboken, NJ
.
10.
Zimmermann
,
S.
,
Meijerb
,
I.
,
Tiwaria
,
M. K.
,
Paredesb
,
S.
,
Michelb
,
B.
, and
Poulikakosa
,
D.
,
2012
, “
Aquasar: A Hot Water Cooled Data Center With Direct Energy Reuse
,”
Energy
,
43
(
1
), pp.
237
245
.
11.
Lozano
,
A.
,
Barreras
,
F.
,
Fueyo
,
N.
, and
Santodomingo
,
S.
,
2008
, “
The Flow in an Oil/Water Plate Heat Exchanger for the Automotive Industry
,”
Appl. Therm. Eng.
,
28
(
10
), pp.
1109
1117
.
12.
Schubert
,
K.
,
Brandner
,
J.
,
Fichtner
,
M.
,
Linder
,
G.
,
Schygulla
,
U.
, and
Wenka
,
A.
,
2001
, “
Microstructure Devices for Applications in Thermal and Chemical Process Engineering
,”
Microscale Thermophys. Eng.
,
5
(
1
), pp.
17
39
.
13.
Dixit
,
T.
, and
Ghosh
,
I.
,
2014
, “
Theoretical and Experimental Studies of Crossflow Minichannel Heat Exchanger Subjected to External Heat Ingress
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
162
171
.
14.
Luo
,
L.
,
Fan
,
Y.
,
Yuan
,
X.
, and
Midoux
,
N.
,
2007
, “
Integration of Constructal Distributors to a Mini Crossflow Heat Exchanger and Their Assembly Configuration Optimization
,”
Chem. Eng. Sci.
,
62
(
13
), pp.
3605
3619
.
15.
Luo
,
L.
,
Fana
,
Z.
,
Le Gallc
,
H.
,
Zhoub
,
X.
, and
Yuanb
,
W.
,
2008
, “
Experimental Study of Constructal Distributor for Flow Equidistribution in a Mini Crossflow Heat Exchanger (MCHE)
,”
Chem. Eng. Process.
,
47
(
2
), pp.
229
236
.
16.
Zhu
,
Y.
, and
Li
,
Y.
,
2008
, “
Three-Dimensional Numerical Simulation on the Laminar Flow and Heat Transfer in Four Basic Fins of Plate-Fin Heat Exchangers
,”
ASME J. Heat Transfer
,
130
(
11
), p.
111801
.
17.
Yaïci
,
W.
,
Ghorab
,
M.
, and
Entchev
,
E.
,
2014
, “
3D CFD Analysis of the Effect of Inlet Air Flow Maldistribution on the Fluid Flow and Heat Transfer Performances of Plate-Fin-and-Tube Laminar Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
74
, pp.
490
500
.
18.
Quintard
,
M.
, and
Whitaker
,
S.
,
1993
, “
One- and Two-Equation Models for Transient Diffusion Processes in Two-Phase Systems
,”
Adv. Heat Transfer
,
23
, pp.
369
464
.
19.
Zhang
,
H. Y.
, and
Huang
,
X. Y.
,
2000
, “
Volumetric Heat Transfer Coefficients in Solid-Fluid Porous Media: Closure Problem, Thermal Analysis and Model Improvement With Fluid Flow
,”
Int. J. Heat Mass Transfer
,
43
(
18
), pp.
3417
3432
.
20.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
, Hoboken, NJ.
21.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow by Patankar
,
Hemisphere
, New York.
You do not currently have access to this content.