Understanding heat transfer mechanisms is crucial in developing new enhancement techniques in pool boiling. In this paper, the available literature on fundamental mechanisms and their role in some of the outstanding enhancement techniques is critically evaluated. Such an understanding is essential in our quest to extend the critical heat flux (CHF) while maintaining low wall superheats. A new heat transfer mechanism related to macroconvection is introduced and its ability to simultaneously enhance both CHF and heat transfer coefficient (HTC) is presented. In the earlier works, increasing nucleation site density by coating a porous layer, providing hierarchical multiscale structures with different surface energies, and nanoscale surface modifications were some of the widely used techniques which relied on enhancing transient conduction, microconvection, microlayer evaporation, or contact line evaporation mechanisms. The microconvection around a bubble is related to convection currents in its immediate vicinity, referred to as the influence region (within one to two times the departing bubble diameter). Bubble-induced convection, which is active beyond the influence region on a heater surface, is introduced in this paper as a new macroconvection mechanism. It results from the macroconvection currents created by the motion of bubbles as they grow and depart from the nucleating sites along a specific trajectory. Directing these bubble-induced macroconvection currents so as to create separate vapor–liquid pathways provides a highly effective enhancement mechanism, improving both CHF and HTC. The incoming liquid as well as the departing bubbles in some cases play a major role in enhancing the heat transfer. Significant performance improvements have been reported in the literature based on enhanced macroconvection contribution. One such microstructure has yielded a CHF of 420 W/cm2 with a wall superheat of only 1.7 °C in pool boiling with water at atmospheric pressure. Further enhancements that can be expected through geometrical refinements and integration of different techniques with macroconvection enhancement mechanism are discussed here.

References

1.
Mosciki
, and
Broder
,
J.
,
1926
, “
Discussion of Heat Transfer From a Platinum Wire Submerged in Water
,”
Rocz. Chem.
,
6
, pp.
321
354
. (English Translation on File at Engineering Research Laboratory Experimental Station, E. I. DuPont de Nemours and Company, Wilmington, DE).
2.
Nukiyama
,
S.
,
1934
, “
The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
J. Jpn. Soc. Mech. Eng.
,
37
(12), pp.
367
374
.
3.
Jakob
,
M.
,
1949
,
Heat Transfer
, Vol.
I
,
Wiley
, New York, Chap. 29.
4.
Rohsenow
,
W. M.
,
1951
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Office of Naval Research
Division of Sponsored Research, Massachusetts Institute of Technology, Cambridge, MA, Contract N5ori-07827, NR-035-267, D.I.C. Project No. 6627, p.
25
.
5.
Moore
,
F. D.
, and
Mesler
,
R. B.
,
1961
, “
The Measurement of Rapid Surface Temperature Fluctuations During Nucleate Boiling of Water
,”
AIChE J.
,
7
(
4
), pp.
620
624
.
6.
Hendricks
,
R. C.
, and
Sharp
,
R. R.
,
1964
, “
Initiation of Cooling Due to Bubble Growth on a Heating Surface
,”
NASA Technical Report No. TN D-2290
.
7.
Cooper
,
M. G.
, and
Lloyd
,
A. B.
,
1966
, “
Transient Local Heat Flux in Nucleate Boiling
,”
Third International Heat Transfer Conference
, Chicago, IL, Vol.
3
, pp.
193
203
.
8.
Han
,
C.-Y.
, and
Griffith
,
P.
,
1962
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling
,”
Office of Naval Research
Division of Sponsored Research, Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, Contract Nonr-1841(39), DSR No. 7-7673, Technical Report No. 7673-19, p.
76
.
9.
Tien
,
C. L.
,
1962
, “
A Hydrodynamic Model for Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
5
(
6
), pp.
533
540
.
10.
Zuber
,
N.
,
1963
, “
Nucleate Boiling. The Region of Isolated Bubbles and the Similarity With Natural Convection
,”
Int. J. Heat Mass Transfer
,
6
(
1
), pp.
53
78
.
11.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Transfer
,
91
(
2
), pp.
245
250
.
12.
Brown
,
W. T.
, Jr.
,
1967
, “
Study of Flow Surface Boiling
,”
Ph.D. thesis
, Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA.
13.
van Stralen
,
S.
, and
Cole
,
R.
,
1979
,
The Mechanism of Nucleate Boiling in Pure and Binary Systems, in Boiling Phenomena
, Vol.
1
,
Hemisphere Publishing
,
New York
, Chap. 9.
14.
Stephan
,
P.
, and
Hammer
,
J.
,
1994
, “
A New Model for Nucleate Boiling Heat Transfer
,”
Warme Stoffubertragung
,
30
(
2
), pp.
119
125
.
15.
Haider
,
S. M.
, and
Webb
,
R. L.
,
1997
, “
A Transient Micro-Convection Model of Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
40
(
15
), pp.
3675
3699
.
16.
Judd
,
R. L.
, and
Hwang
,
K. S.
,
1976
, “
A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation
,”
ASME J. Heat Transfer
,
98
(
4
), pp.
623
629
.
17.
Demiray
,
F.
, and
Kim
,
J.
,
2004
, “
Microscale Heat Transfer Measurements During Pool Boiling of FC-72: Effect of Subcooling
,”
Int. J. Heat Mass Transfer
,
47
(14–16,), pp.
3257
3268
.
18.
Meyers
,
J. G.
,
Yeramilli
,
V. K.
,
Hussey
,
S. W.
,
Yee
,
G. F.
, and
Kim
,
J.
,
2005
, “
Time and Space Resolved Wall Temperature and Heat Flux Measurements During Nucleate Boiling With Constant Heat Flux Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2429
2442
.
19.
Kim
,
J.
,
2009
, “
Review of Nucleate Pool Boiling Heat Transfer Mechanisms
,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1067
1076
.
20.
Moghaddam
,
S.
, and
Kiger
,
K.
,
2009
, “
Physical Mechanisms of Heat Transfer During Single Bubble Nucleate Boiling of FC-72 Under Saturated Conditions—I: Experimental Investigation
,”
Int. J. Heat Mass Transfer
,
52
(5–6), pp.
1284
1294
.
21.
Moghaddam
,
S.
, and
Kiger
,
K.
,
2009
, “
Physical Mechanisms of Heat Transfer During Single Bubble Nucleate Boiling of FC-72 Under Saturation Conditions—II: Theoretical Analysis
,”
Int. J. Heat Mass Transfer
,
52
(5–6), pp.
1295
1303
.
22.
Yabuki
,
T.
, and
Nakabeppu
,
O.
,
2014
, “
Heat Transfer Mechanisms in Isolated Bubble Boiling of Water Observed With MEMS Sensor
,”
Int. J. Heat Mass Transfer
,
76
(15–16), pp.
286
297
.
23.
Wayner
,
P. C.
, Jr.
,
Kao
,
Y. K.
, and
LaCroix
,
L. V.
,
1976
, “
The Interline Heat Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
487
493
.
24.
Raghupathi
,
P.
, and
Kandlikar
,
S. G.
,
2016
, “
Contact Line Region Heat Transfer Mechanisms
,”
Int. J. Heat Mass Transfer
,
95
, pp.
296
306
.
25.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
, and
Mukherjee
,
A.
,
2005
, “
Experimental Study of an Evaporating Meniscus on a Moving Heated Surface
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
244
252
.
26.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2006
, “
Numerical Study of an Evaporating Meniscus on a Moving Heated Surface
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1285
1292
.
27.
Westwater
,
J. W.
,
1973
, “
Development of Extended Surfaces for Use in Boiling Liquids
,”
AIChE Symp. Ser.
,
69
(
131
), pp.
1
9
.
28.
McGillis
,
W. R.
,
Carey
,
V. P.
,
Fitch
,
J. S.
, and
Hamburgen
,
W. R.
,
1991
, “
Pool Boiling Enhancement Techniques for Water at Low Pressure
,”
Seventh Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM VII
), Phoenix, AZ, Feb. 12–14, IEEE, pp. 64–72.
29.
Kurihari
,
H. M.
, and
Myers
,
J. E.
,
1960
, “
The Effects of Superheat and Surface Roughness on Boiling Coefficients
,”
AIChE J.
,
6
(
1
), pp.
83
91
.
30.
Marto
,
P. J.
, and
Lepere
,
V. J.
,
1982
, “
Pool Boiling Heat Transfer From Enhanced Surfaces to Dielectric Fluids
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
292
299
.
31.
Bergles
,
A. E.
,
1997
, “
Enhancement of Pool Boiling
,”
Int. J. Refrig.
,
20
(
8
), pp.
545
551
.
32.
Webb
,
R. L.
,
1983
, “
Nucleate Boiling on Porous Coated Surfaces
,”
Heat Transfer Eng.
,
4
(
3–4
), pp.
71
82
.
33.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Boiling Heat Transfer Phenomena From Microporous and Porous Surfaces in Saturated FC-72
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4437
4447
.
34.
Liter
,
S. G.
, and
Kaviany
,
M.
,
2001
, “
Pool-Boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4287
4311
.
35.
Li
,
C.
, and
Peterson
,
G. P.
,
2007
, “
Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1465
1475
.
36.
Li
,
C. H.
,
Li
,
T.
,
Hodgins
,
P.
,
Hunter
,
C. N.
,
Voevodin
,
A. A.
,
Jones
,
J. G.
, and
Peterson
,
G. P.
,
2011
, “
Comparison Study of Liquid Replenishing Impacts on Critical Heat Flux and Heat Transfer Coefficient of Nucleate Pool Boiling on Multiscale Modulated Porous Structures
,”
Int. J. Heat Mass Transfer
,
54
(15–16), pp.
3146
3155
.
37.
Mori
,
S.
, and
Okuyama
,
K.
,
2009
, “
Enhancement of the Critical Heat Flux in Saturated Pool Boiling Using Honeycomb Porous Media
,”
Int. J. Multiphase Flow
,
35
(
10
), pp.
946
951
.
38.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces—Part I: Experimental Investigation
,”
ASME J. Heat Transfer
,
102
(
3
), pp.
445
450
.
39.
Bai
,
L.
,
Zhang
,
L.
,
Lin
,
G.
, and
Peterson
,
G. P.
,
2016
, “
Pool Boiling With High Heat Flux Enabled by a Porous Artery Structure
,”
Appl. Phys. Lett.
,
108
(
23
), p.
233901
.
40.
Dai
,
X.
,
Yang
,
F.
,
Yang
,
R.
,
Huang
,
X.
, and
Rigdon
,
W. A.
,
2014
, “
Biphilic Nanoporous Surfaces Enabled Exceptional Drag Reduction and Capillary Evaporation Enhancement
,”
Appl. Phys. Lett.
,
105
(
19
), p.
191611
.
41.
Plawsky
,
J. L.
,
Fedorov
,
A. G.
,
Garimella
,
S. V.
,
Ma
,
H. B.
,
Maroo
,
S. C.
,
Chen
,
L.
, and
Nam
,
Y.
,
2014
, “
Nano- and Microstructures for Thin Film Evaporation–A Review
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
251
269
.
42.
Liaw
,
S. P.
, and
Dhir
,
V. K.
,
1986
, “
Effect of Surface Wettability on Transition Boiling Heat Transfer From a Vertical Surface
,”
Eighth International Heat Transfer Conference
, San Francisco, CA, Vol.
4
, pp.
2031
2036
.
43.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.
44.
Betz
,
A. R.
,
Xu
,
J.
,
Qiu
,
H.
, and
Attinger
,
D.
,
2010
, “
Do Surfaces With Mixed Hydrophilic and Hydrophobic Areas Enhance Pool Boiling?
,”
Appl. Phys. Lett.
,
97
(
14
), p.
141909
.
45.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.
46.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement
,”
Appl. Phys. Lett.
,
102
(
15
), p.
151602
.
47.
O'Hanley
,
Coyle
,
C.
,
Buongiorno
,
J.
,
McKrell
,
T.
,
Hu
,
L.-W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2013
, “
Separate Effects of Surface Roughness, Wettability, and Porosity on the Boiling Critical Heat Flux
,”
Appl. Phys. Lett.
,
103
(
2
), p.
024102
.
48.
Rahman
,
M. M.
,
Ölçeroğlu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
11234
.
49.
Zou
,
A.
, and
Maroo
,
S. C.
,
2013
, “
Critical Height of Micro/Nano Structures for Pool Boiling Heat Transfer Enhancement
,”
Appl. Phys. Lett.
103
(
22
), p.
221602
.
50.
Jaikumar
,
A.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2016
, “
Pool Boiling Enhancement Through Graphene and Graphene Oxide Coatings
,”
Heat Transfer Eng.
,
38
, pp.
14
15
.
51.
Mikic
,
B. B.
,
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1970
, “
On Bubble Growth Rates
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
657
666
.
52.
Ahn
,
H. S.
,
Kim
,
J. M.
,
Kaviany
,
M.
, and
Kim
,
M. H.
,
2014
, “
Pool Boiling Experiments in Reduced Graphene Oxide Colloid—Part I: Boiling Characteristics
,”
Int. J. Heat Mass Transfer
,
74
, pp.
501
512
.
53.
Ahn
,
H. S.
,
Kim
,
J. M.
,
Kim
,
J. M.
,
Park
,
S. C.
,
Hwang
,
K.
,
Jo
,
H. J.
,
Kim
,
T.
,
Jerng
,
D. W.
,
Kaviany
,
M.
, and
Kim
,
M. H.
,
2015
, “
Boiling Characteristics on the Reduced Graphene Oxide Films
,”
Exp. Therm. Fluid Sci.
,
60
, pp.
361
366
.
54.
Seo
,
H.
,
Chu
,
J. H.
,
Kwon
,
S.-Y.
, and
Bang
,
C.
,
2015
, “
Pool Boiling CHF of Reduced Graphene Oxide, Graphene, and SiC-Coated Surfaces Under Highly Wettable FC-72
,”
Int. J. Heat Mass Transfer
,
82
, pp.
490
502
.
55.
Kandlikar
,
S. G.
,
2013
, “
Controlling Bubble Motion Over Heated Surface Through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
102
(
5
), p.
051611
.
56.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2016
, “
Bubble Growth and Departure Trajectory Under Asymmetric Temperature Conditions
,”
Int. J. Heat Mass Transfer
,
95
, pp.
824
832
.
57.
Rahman
,
M. M.
,
Pollack
,
J.
, and
McCarthy
,
M.
,
2015
, “
Heat Transfer Using Low Conductivity Materials
,”
Scientific Reports
,
5
, p.
13145
.
58.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.
59.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2011
, “
Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
,”
ASME J. Heat Transfer
,
133
(
5
), p.
052902
.
60.
Patil
,
C. M.
, and
Kandlikar
,
S. G.
,
2014
, “
Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
816
828
.
61.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Ultra-High Pool Boiling Performance and Effect of Channel Width With Selectively Coated Open Microchannels
,”
Int. J. Heat Mass Transfer
,
95
, pp.
795
805
.
62.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Enhanced Pool Boiling for Electronics Cooling Using Porous Fin Tops on Open Microchannels With FC-87
,”
Appl. Thermal Eng.
,
91
, pp.
426
433
.
63.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Pool Boiling Enhancement Through Bubble Induced Convective Liquid Flow in Feeder Microchannels
,”
Appl. Phys. Lett.
,
108
(
4
), p.
041604
.
You do not currently have access to this content.