In this study, a three-layered skin tissue has been modeled to assess the heat transfer characteristics in laser skin tumor–tissue interaction. A finite-volume-based two-dimensional numerical bioheat transfer model has been put together to study the damage prediction of healthy tissues by considering both Fourier and non-Fourier laws. The combination of the bioheat transfer equation with Fourier law forms the parabolic equation (Pennes model) and with the non-Fourier equation forms the hyperbolic equation (thermal wave model). In this paper, the laser source is provided on the outer layer of the skin to dismantle the undesired tumor region exemplified as inhomogeneity (tumor) present in the intermediate layer. Heat input through the laser source is on until it reaches the tumor-killing criteria. The heat transport equation has been discretized by the finite volume method (FVM). The finite-volume-based numerical model is developed in such a way that the non-Fourier model predictions can be obtained through conventional Fourier-based solver. The central difference scheme is adopted for discretizing the spatial derivative terms. An implicit scheme is applied to treat the transient terms in the model. For few cases of the hyperbolic problems, certain limitation for a chosen implicit scheme has also been addressed in this paper. The results are validated with the existing literatures. The evaluated results are based on both the Fourier and the non-Fourier model, to investigate the temperature distribution and thermal damage by ensuring irreversible thermal damage in the whole tumor region placed in the dermis layer. Thermal damage of the healthy tissue is found to be more in the time scale of the thermal wave model.

References

References
1.
Xu
,
F.
, and
Lu
,
T.
,
2011
,
Introduction to Skin Biothermomechanics and Thermal Pain
,
Springer
,
Berlin
.
2.
Mitra
,
K.
,
Kumar
,
S.
,
Vedavarz
,
A.
, and
Moallemi
,
M. K.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
568
573
.
3.
Kaminski
,
W.
,
1990
, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
555
560
.
4.
Richardson
,
A. W.
,
Imig
,
C. G.
,
Feucht
,
B. L.
, and
Hines
,
H. M.
,
1950
, “
The Relationship Between Deep Tissue Temperature and Blood Flow During Electromagnetic Irradiation
,”
Arch. Phys. Med. Rehabil.
,
31
(
1
), pp.
19
25
.
5.
Roemer
,
R. B.
,
Oleson
,
J. R.
, and
Cetas
,
T. C.
,
1985
, “
Oscillatory Temperature Response to Constant Power Applied to Canine Muscle
,”
Am. J. Physiol.
,
249
(
2
), pp.
R153
R158
.
6.
Herwig
,
H.
, and
Beckert
,
K.
,
2000
, “
Experimental Evidence About the Controversy Concerning Fourier or Non-Fourier Heat Conduction in Materials With a Nonhomogeneous Inner Structure
,”
Heat Mass Transfer
,
36
(
5
), pp.
387
392
.
7.
Graßmann
,
A.
, and
Peters
,
F.
,
1999
, “
Experimental Investigation of Heat Conduction in Wet Sand
,”
Heat Mass Transfer
,
35
(
4
), pp.
289
294
.
8.
Roetzel
,
W.
,
Putra
,
N.
, and
Das
,
S. K.
,
2003
, “
Experiment and Analysis for Non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure
,”
Int. J. Therm. Sci.
,
42
(
6
), pp.
541
552
.
9.
Banerjee
,
A.
,
Ogale
,
A. A.
,
Das
,
C.
,
Mitra
,
K.
, and
Subramanian
,
C.
,
2005
, “
Temperature Distribution in Different Materials Due to Short Pulse Laser Irradiation
,”
Heat Transfer Eng.
,
26
(
8
), pp.
41
49
.
10.
Jeong
,
S. W.
,
Liu
,
H.
, and
Chen
,
W. R.
,
2003
, “
Temperature Control in Deep Tumor Treatment
,”
Proc. SPIE
,
5068
, pp.
210
216
.
11.
Jiao
,
J.
, and
Guo
,
Z.
,
2009
, “
Thermal Interaction of Short Pulsed Laser Focused Beams With Skin Tissues
,”
Phys. Med. Biol.
,
54
(
13
), pp.
4225
4241
.
12.
Robinson
,
D. S.
,
Parel
,
J. M.
,
Denham
,
D. B.
,
Gonzalez-Cirre
,
X.
,
Manns
,
F.
,
Milne
,
P. J.
,
Schachner
,
R. D.
,
Herron
,
A. J.
,
Comander
,
J.
, and
Hauptmann
,
G.
,
1998
, “
Interstitial Laser Hyperthermia Model Development for Minimally Invasive Therapy of Breast Carcinoma
,”
J. Am. Coll. Surg.
,
186
(
3
), pp.
284
292
.
13.
Sajjadi
,
A. Y.
,
Mitra
,
K.
, and
Guo
,
Z.
,
2013
, “
Thermal Analysis and Experiments of Laser-Tissue Interactions: A Review
,”
Heat Transfer Res.
,
44
(
3–4
), pp.
345
388
.
14.
Dewhrist
,
M. W.
,
Viglianti
,
B. L.
,
Lora-Michiels
,
M.
,
Hoopes
,
P. J.
, and
Hanson
,
M.
,
2003
, “
Thermal Dose Requirement for Tissue Effect: Experimental and Clinical Findings
,”
Proc. SPIE
,
4954
, pp.
37
57
.
15.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperature in the Resting Forearm
,”
J. Appl. Physiol.
,
1
(2), pp.
93
122
.
16.
Yang
,
W. H.
,
1993
, “
Thermal (Heat) Shock Biothermomechanical Viewpoint
,”
ASME J. Biomed. Eng.
,
115
(
4B
), pp.
617
621
.
17.
Verma
,
A. K.
, and
Mahapatra
,
S. K.
,
2016
, “
Thermal Wave Model for Analysis of Multilayer Tissue Medium in Presence of Inhomogeneity in Laser Treatment
,”
ASME
Paper No. MNHMT2016-6464.
18.
Liu
,
J.
,
Chen
,
X.
, and
Xu
,
L. X.
,
1999
, “
New Thermal Wave Aspects on Burn Evaluation of Skin Subjected to Instantaneous Heating
,”
IEEE Trans. Biomed. Eng.
,
46
(
4
), pp.
420
426
.
19.
Shih
,
T.-C.
,
Yuan
,
P.
,
Lin
,
W.-L.
, and
Kou
,
H.-S.
,
2007
, “
Analytical Analysis of the Pennes Bioheat Transfer Equation With Sinusoidal Heat Flux Condition on Skin Surface
,”
Med. Eng. Phys.
,
29
(
9
), pp.
946
953
.
20.
Xu
,
F.
,
Seffen
,
K. A.
, and
Lu
,
T. J.
,
2008
, “
Non-Fourier Analysis of Biothermomechanics
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2237
2259
.
21.
Ahmadikia
,
H.
,
Fazlali
,
R.
, and
Moradi
,
A.
,
2012
, “
Analytical Solution of the Parabolic and Hyperbolic Heat Transfer Equations With Constant and Transient Heat Flux Conditions on Skin Tissue
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
121
130
.
22.
Ströher
,
G. R.
, and
Ströher
,
G. L.
,
2014
, “
Numerical Thermal Analysis of Skin Tissue Using Parabolic and Hyperbolic Approaches
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
193
199
.
23.
Askarizadeh
,
H.
, and
Ahmadikia
,
H.
,
2015
, “
Analytical Study on the Transient Heating of a Two-Dimensional Skin Tissue Using Parabolic and Hyperbolic Bioheat Transfer Equations
,”
Appl. Math. Modell.
,
39
(
13
), pp.
3704
3720
.
24.
Cattaneo
,
C.
,
1958
, “
A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
Comptes Rendus
,
247
, pp.
431
433
.
25.
Vernotte
,
P.
,
1958
, “
Paradoxes in Theory of Continuity for Heat Equation
,”
Comptes Rendus
,
46
(
22
), pp.
3154
3155
.
26.
Henriques
,
F. C.
, and
Moritz
,
A. R.
,
1947
, “
Study of Thermal Injury: I. The Conduction of Heat to and Through Skin and the Temperature Attained Therein. A Theoretical and an Experimental Investigation
,”
Am. J. Pathol.
,
23
(
4
), pp.
531
549
.
27.
Moritz
,
A. R.
, and
Henriques
,
F. C.
,
1947
, “
Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns
,”
Am. J. Pathol.
,
23
(
5
), pp.
695
720
.
28.
Henriques
,
F. C.
,
1947
, “
Study of Thermal Injuries—V: The Predictability and the Significance of Thermally Induced Rate Processes Leading to Irreversible Epidermal Injury
,”
Arch. Pathol.
,
43
(
5
), pp.
489
502
.
29.
Diller
,
K. R.
,
1992
, “
Modeling of Bioheat Transfer Processes at High and low Temperatures
,”
Adv. Heat Transfer
,
22
, pp.
157
357
.
30.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing
,
New York
.
31.
Zhang
,
H.
,
2008
, “
Lattice Boltzmann Method for Solving the Bioheat Equation
,”
Phys. Med. Biol.
,
53
(
3
), pp.
N15
N23
.
32.
Cohen
,
M. L.
,
1977
, “
Measurement of the Thermal Properties of Human Skin. A Review
,”
J. Invest. Dermatol.
,
69
(
3
), pp.
333
338
.
33.
Emery
,
A. F.
, and
Sekins
,
K. M.
,
1982
, “
The Use of Heat Transfer Principles in Designing Optimal Diathermy and Cancer Treatment Modalities
,”
Int. J. Heat Mass Transfer
,
25
(
6
), pp.
823
834
.
34.
Xu
,
F.
,
Lu
,
T. J.
,
Seffen
,
K. A.
, and
Ng
,
E. Y. K.
,
2009
, “
Mathematical Modeling of Skin Bioheat Transfer
,”
ASME J. Appl. Mech. Rev.
,
62
(
5
), p.
050801
.
You do not currently have access to this content.