The objective is to validate a designed heating protocol in a previous study based on treatment efficacy of magnetic nanoparticle hyperthermia in prostate tumors. In vivo experiments have been performed to induce temperature elevations in implanted PC3 tumors injected with magnetic nanoparticles, following the same heating protocol designed in our previous microCT-based theoretical simulation. A tumor shrinkage study and histological analyses of tumor cell death are conducted after the heating. Tumor shrinkage is observed over a long period of 8 weeks. Histological analyses of the tumors after heating are used to evaluate whether irreversible thermal damage occurs in the entire tumor region. It has been shown that the designed 25 min heating (Arrhenius integral Ω ≥ 4 in the entire tumor) on tumor tissue is effective to cause irreversible thermal damage to PC3 tumors, while reducing the heating time to 12 min (Ω ≥ 1 in the entire tumor) results in an initial shrinkage, however, later tumor recurrence. The treated tumors with 25 min of heating disappear after only a few days. On the other hand, the tumors in the control group without heating show approximately an increase of more than 700% in volume over the 8-week observation period. In the undertreated group with 12 min of heating, its growth rate is smaller than that in the control group. In addition, results of the histological analysis suggest vast regions of apoptotic and necrotic cells, consistent with the regions of significant temperature elevations. In conclusion, this study demonstrates the importance of imaging-based design for individualized treatment planning. The success of the designed heating protocol for completely damaging PC3 tumors validates the theoretical models used in planning heating treatment in magnetic nanoparticle hyperthermia.

References

References
1.
Dewhirst
,
M. W.
,
Viglianti
,
B. L.
,
Lora-Michiels
,
M.
,
Hanson
,
M.
, and
Hoopes
,
P. J.
,
2003
, “
Basic Principles of Thermal Dosimetry and Thermal Thresholds for Tissue Damage From Hyperthermia
,”
Int. J. Hyperthermia
,
19
(
3
), pp.
267
294
.
2.
Bia
,
J. F.
,
Liu
,
P.
, and
Xu
,
L. X.
,
2014
, “
Recent Advances in Thermal Treatment Techniques and Thermally Induced Immune Responses Against Cancer
,”
IEEE Trans. Biomed. Eng.
,
61
(
5
), pp.
1497
1505
.
3.
Moritz
,
A. R.
, and
Henriques
,
F. C.
,
1947
, “
Studies of Thermal Injury II: the Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns
,”
Am. J. Pathol.
,
23
(
5
), pp.
695
720
.
4.
Pearce
,
J. A.
,
2015
, “
Improving Accuracy in Arrhenius Models to Cell Death: Adding a Temperature-Dependent Time Delay
,”
ASME J. Biomech. Eng.
,
137
(
12
), p.
121006
.
5.
Ryu
,
S.
,
Brown
,
S. L.
,
Kim
,
S. H.
,
Khil
,
M. S.
, and
Kim
,
J. H.
,
1996
, “
Preferential Radiosensitization of Human Prostatic Carcinoma Cells by Mild Hyperthermia
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
34
(
1
), pp.
133
138
.
6.
Rylander
,
M. N.
,
Stafford
,
R. J.
,
Hazle
,
J.
,
Whitney
,
J.
, and
Diller
,
K. R.
,
2011
, “
Heat Shock Protein Expression and Temperature Distribution in Prostate Tumours Treated With Laser Irradiation and Nanoshells
,”
Int. J. Hyperthermia
,
27
(
8
), pp.
791
801
.
7.
Bhowmick
,
S.
,
Swanlund
,
D. J.
, and
Bischof
,
J. C.
,
2000
, “
Supraphysiological Thermal Injury in Dunning AT-1 Prostate Tumor Cells
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
51
59
.
8.
Hou
,
C. H.
,
Hou
,
S. M.
,
Hsueh
,
Y. S.
,
Lin
,
J.
,
Wu
,
C. H.
, and
Lin
,
F. H.
,
2009
, “
The In Vivo Performance of Biomagnetic Hydroxyapatite Nanoparticles in Cancer Hyperthermia Therapy
,”
Biomaterials
,
30
(
23
), pp.
3956
3960
.
9.
Kumar
,
V.
,
Abbas
,
A.
,
Nelson
,
F.
, and
Mitchell
,
R.
,
2007
,
Robbins Basic Pathology
,
8th ed.
,
Elsevier/Saunders
,
Philadelphia, PA
.
10.
Skinnider
,
L. F.
, and
Ghadially
,
F. N.
,
1976
, “
Chloramphenicol-Induced Mitochondrial and Ultrastructural Changes in Hemopoietic Cells
,”
Arch. Pathol. Lab.
,
100
(
11
), pp.
601
605
.
11.
Fischer
,
A. H.
,
Jacobson
,
K. A.
,
Rose
,
J.
, and
Zeller
,
R.
,
2008
, “Hematoxylin and Eosin Staining of Tissue and Cell Sections,”
Cold Spring Harbor Protocols
,
3
(
5
).
12.
LeBrun
,
A.
,
Ma
,
R.
, and
Zhu
,
L.
,
2016
, “
MicroCT Image Based Simulation to Design Heating Protocols in Magnetic Nanoparticle Hyperthermia for Cancer Treatment
,”
J. Therm. Biol.
,
62
(
Part B
), pp.
129
137
.
13.
LeBrun
,
A.
,
Joglekar
,
T.
,
Bieberich
,
C.
,
Ma
,
R.
, and
Zhu
,
L.
,
2016
, “
Identification of Infusion Strategy for Achieving Repeatable Nanoparticle Distribution and Quantification of Thermal Dosage Using MicroCT Hounsfield Unit in Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperthermia
,
32
(
2
), pp.
132
143
.
14.
Osborne
,
C. K.
,
Hobbs
,
K.
, and
Clark
,
G. M.
,
1985
, “
Effect of Estrogens and Antiestrogens on Growth of Human Breast Cancer Cells in Athymic Nude Mice
,”
Cancer Res.
,
45
(
2
), pp.
584
590
.
15.
Euhus
,
D. M.
,
Hudd
,
C.
,
LaRegina
,
M. C.
, and
Johnson
,
F. E.
,
1986
, “
Tumor Measurement in the Nude Mouse
,”
J. Surg. Oncol.
,
31
(
4
), pp.
229
234
.
16.
Tomayko
,
M. M.
, and
Reynolds
,
C. P.
,
1989
, “
Determination of Subcutaneous Tumor Size in Athymic (Nude) Mice
,”
Cancer Chemother. Pharmacol.
,
24
(
3
), pp.
148
154
.
17.
Manuchehrabadi
,
N.
,
Attaluri
,
A.
,
Cai
,
H.
,
Edziah
,
R.
,
Lalanne
,
E.
,
Bieberich
,
C.
,
Ma
,
R.
,
Johnson
,
A. M.
, and
Zhu
,
L.
,
2013
, “
Tumor Shrinkage Studies and Histological Analyses After Laser Photothermal Therapy Using Gold Nanorods
,”
J. Biomed. Eng. Technol.
,
12
(
2
), pp.
157
175
.
18.
Jensen
,
M. M.
,
Jorgensen
,
T.
,
Binderup
,
T.
, and
Kjaer
,
A.
,
2008
, “
Tumor Volume in Subcutaneous Mouse Xenografts Measured by MicroCT is More Accurate and Reproducible Than Determined by 18F-FDG-MicroPET or External Caliper
,”
BMC Med. Imaging
,
8
(
1
), epub.
19.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Thiesen
,
B.
,
Taymoorian
,
K.
,
Cho
,
C. H.
,
Waldöfner
,
N.
,
Scholz
,
R.
,
Jordan
,
A.
,
Stefan
,
A.
,
Loening
,
S. A.
, and
Wust
,
P.
,
2007
, “
Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution
,”
Eur. Urol.
,
52
(
6
), pp.
1653
1662
.
20.
Maier-Hauff
,
K.
,
Ulrich
,
F.
,
Nestler
,
D.
,
Niehoff
,
H.
,
Wust
,
P.
,
Thiesen
,
B.
,
Orawa
,
H.
,
Budach
,
V.
, and
Jordan
,
A.
,
2011
, “
Efficacy and Safety of Intratumoral Thermotherapy Using Magnetic Iron-Oxide Nanoparticles Combined With External Beam Radiotherapy on Patients With Recurrent Glioblastoma Multiforme
,”
J. Neuro-Oncol.
,
103
(
2
), pp.
317
324
.
21.
Maeda
,
H.
,
2001
, “
The Enhanced Permeability and Retention (EPR) Effect in Tumor Vasculature: The Key Role of Tumor-Selective Macromolecular Drug Targeting
,”
Adv. Enzyme Regul.
,
41
(
1
), pp.
189
207
.
22.
Singha
,
N.
,
Jenkins
,
G. J. S.
,
Asadi
,
R.
, and
Doak
,
S. H.
,
2010
, “
Potential Toxicity of Superparamagnetic Iron Oxide Nanoparticles (SPION)
,”
Nano Rev.
,
1
, p.
5358
.
23.
Markides
,
H.
,
Rotherham
,
M.
, and
El Haj
,
A. J.
,
2012
, “
Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine
,”
J. Nanomater.
,
2012
, p.
452767
.
24.
Reddy
,
L. H.
,
Arias
,
J. L.
,
Nicolas
,
J.
, and
Couvreur
,
P.
,
2012
, “
Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications
,”
Chem. Rev.
,
112
(
11
), pp.
5818
5878
.
25.
Wust
,
P.
,
Gneveckow
,
U.
,
Johannsen
,
M.
,
Bohmer
,
D.
,
Henkel
,
T.
,
Kahmann
,
F.
,
Sehouli
,
J.
,
Felix
,
R.
,
Ricke
,
J.
, and
Jordan
,
A.
,
2006
, “
Magnetic Nanoparticles for Interstitial Thermotherapy Feasibility, Tolerance and Achieved Temperatures
,”
Int. J. Hyperthermia
,
22
(
8
), pp.
673
685
.
26.
Sadauskas
,
E.
,
Wallin
,
H.
,
Stoltenberg
,
M.
,
Vogel
,
U.
,
Doering
,
P.
,
Larsen
,
A.
, and
Danscher
,
G.
,
2007
, “
Kupffer Cells are Central in the Removal of Nanoparticles From the Organism
,”
Part. Fibre Toxicol.
,
4
, epub.
27.
Moros
,
E.
,
2012
,
Physics of Thermal Therapy: Fundamentals and Clinical Applications
,
CRC Press
,
Boca Raton, FL
.
28.
Chu
,
K. F.
, and
Dupuy
,
D.
,
2014
, “
Thermal Ablation of Tumours: Biological Mechanisms and Advances in Therapy
,”
Nat. Rev.
,
14
(
3
), pp.
199
208
.
29.
Song
,
A. S.
,
Najjar
,
A. M.
, and
Diller
,
K. R.
,
2014
, “
Thermally Induced Apoptosis, Necrosis, and Heat Shock Protein Expression in 3D Culture
,”
ASME J. Biomech. Eng.
,
136
(
7
), p.
071006
.
You do not currently have access to this content.