The effect of chemical reactions of burnt gas on heat transfer on a cooled wall in a turbulent channel flow is investigated by direct numerical simulations. Burnt gas from a H2/O2 mixture is used as a fluid and a detailed chemical reaction mechanism that considers eight chemical species and 19 elemental reactions is used in the reaction calculation. The initial gas temperature and pressure are 3173 K and 2.0 MPa, respectively. The Reynolds number based on the channel width and mean streamwise velocity is approximately 6400 and that based on the channel half width and friction velocity is approximately 200. The results show that heat release because of consumption of radicals such as OH and H near the wall increases the heat flux on the wall and that the heat flux is enhanced by the significant increase in the local heat flux at high-speed streaks where radicals are supplied by sweep events constituting bursting motions in the turbulent boundary layer.

References

References
1.
Luo
,
K.
,
Wang
,
H.
,
Yi
,
F.
, and
Fan
,
J.
,
2012
, “
Direct Numerical Simulation Study of an Experimental Lifted H2/N2 Flame—Part 1: Validation and Flame Structure
,”
Energy Fuels
,
26
(
10
), pp.
6118
6127
.
2.
Wang
,
H.
,
Luo
,
K.
,
Yi
,
F.
, and
Fan
,
J.
,
2012
, “
Direct Numerical Simulation Study of an Experimental Lifted H2/N2 Flame—Part 2: Flame Stabilization
,”
Energy Fuels
,
26
(
8
), pp.
4830
4839
.
3.
Wang
,
H.
,
Luo
,
K.
, and
Fan
,
J.
,
2012
, “
Direct Numerical Simulation and Conditional Statistics of Hydrogen/Air Turbulent Premixed Flames
,”
Energy Fuels
,
27
(
1
), pp.
549
560
.
4.
Ahmed
,
I.
, and
Swaminathan
,
N.
,
2014
, “
Simulation of Turbulent Explosion of Hydrogen–Air Mixtures
,”
Int. J. Hydrogen Energy
,
39
(
17
), pp.
9562
9572
.
5.
Minamoto
,
Y.
,
Aoki
,
K.
,
Tanahashi
,
M.
, and
Swaminathan
,
N.
,
2015
, “
DNS of Swirling Hydrogen–Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
40
(
39
), pp.
13604
13620
.
6.
Kawamura
,
H.
,
Ohsaka
,
K.
,
Abe
,
H.
, and
Yamamoto
,
K.
,
1998
, “
DNS of Turbulent Heat Transfer in Channel Flow With Low to Medium-High Prandtl Number Fluid
,”
Int. J. Heat Fluid Flow
,
19
(
5
), pp.
482
491
.
7.
Morinishi
,
Y.
,
Tamano
,
S.
, and
Nakabayashi
,
K.
,
2004
, “
Direct Numerical Simulation of Compressible Turbulent Channel Flow Between Adiabatic and Isothermal Walls
,”
J. Fluid Mech.
,
502
, pp.
273
308
.
8.
Scalo
,
C.
,
Bodart
,
J.
, and
Lele
,
S. K.
,
2015
, “
Compressible Turbulent Channel Flow With Impedance Boundary Conditions
,”
Phys. Fluids
,
27
(
3
), p.
035107
.
9.
Eichler
,
C.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2012
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011502
.
10.
Gruber
,
A.
,
Sankaran
,
R.
,
Hawkes
,
E.
, and
Chen
,
J.
,
2010
, “
Turbulent Flame–Wall Interaction: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
658
, pp.
5
32
.
11.
Gruber
,
A.
,
Chen
,
J. H.
,
Valiev
,
D.
, and
Law
,
C. K.
,
2012
, “
Direct Numerical Simulation of Premixed Flame Boundary Layer Flashback in Turbulent Channel Flow
,”
J. Fluid Mech.
,
709
, pp.
516
542
.
12.
Lee
,
Y.
,
Korpela
,
S. A.
, and
Horne
,
R. N.
,
1982
, “
Structure of Multi-Cellular Natural Convection in a Tall Vertical Annulus
,”
7th International Heat Transfer Conference
, Vol.
2
, pp.
221
226
.
13.
Mayer
,
C.
,
Sangl
,
J.
,
Sattelmayer
,
T.
,
Lachaux
,
T.
, and
Bernero
,
S.
,
2012
, “
Study on the Operational Window of a Swirl Stabilized Syngas Burner Under Atmospheric and High Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031506
.
14.
Conaire
,
M. Ó.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.
15.
Liu
,
X.-D.
,
Osher
,
S.
, and
Chan
,
T.
,
1994
, “
Weighted Essentially Non-Oscillatory Schemes
,”
J. Comput. Phys.
,
115
(
1
), pp.
200
212
.
16.
Baba
,
Y.
, and
Kurose
,
R.
,
2008
, “
Analysis and Flamelet Modelling for Spray Combustion
,”
J. Fluid Mech.
,
612
, pp.
45
79
.
17.
Fujita
,
A.
,
Watanabe
,
H.
,
Kurose
,
R.
, and
Komori
,
S.
,
2013
, “
Two-Dimensional Direct Numerical Simulation of Spray Flames–Part 1: Effects of Equivalence Ratio, Fuel Droplet Size and Radiation, and Validity of Flamelet Model
,”
Fuel
,
104
, pp.
515
525
.
18.
Kitano
,
T.
,
Nakatani
,
T.
,
Kurose
,
R.
, and
Komori
,
S.
,
2013
, “
Two-Dimensional Direct Numerical Simulation of Spray Flames–Part 2: Effects of Ambient Pressure and Lift, and Validity of Flamelet Model
,”
Fuel
,
104
, pp.
526
535
.
19.
Brown
,
P. N.
,
Byrne
,
G. D.
, and
Hindmarsh
,
A. C.
,
1989
, “
VODE: A Variable-Coefficient ODE Solver
,”
SIAM J. Sci. Stat. Comput.
,
10
(
5
), pp.
1038
1051
.
20.
Kitano
,
T.
,
Tsuji
,
T.
,
Kurose
,
R.
, and
Komori
,
S.
,
2015
, “
Effect of Pressure Oscillations on Flashback Characteristics in a Turbulent Channel Flow
,”
Energy Fuels
,
29
(
10
), pp.
6815
6822
.
21.
Hara
,
T.
,
Muto
,
M.
,
Kitano
,
T.
,
Kurose
,
R.
, and
Komori
,
S.
,
2015
, “
Direct Numerical Simulation of a Pulverized Coal Jet Flame Employing a Global Volatile Matter Reaction Scheme Based on Detailed Reaction Mechanism
,”
Combust. Flame
,
162
(
12
), pp.
4391
4407
.
22.
Kitano
,
T.
,
Nishio
,
J.
,
Kurose
,
R.
, and
Komori
,
S.
,
2014
, “
Effects of Ambient Pressure, Gas Temperature and Combustion Reaction on Droplet Evaporation
,”
Combust. Flame
,
161
(
2
), pp.
551
564
.
23.
Kitano
,
T.
,
Nishio
,
J.
,
Kurose
,
R.
, and
Komori
,
S.
,
2014
, “
Evaporation and Combustion of Multicomponent Fuel Droplets
,”
Fuel
,
136
, pp.
219
225
.
24.
Kitano
,
T.
,
Kurose
,
R.
, and
Komori
,
S.
,
2013
, “
Effects of Internal Pressure and Inlet Velocity Disturbances of Air and Fuel Droplets on Spray Combustion Field
,”
J. Therm. Sci. Technol.
,
8
(
1
), pp.
269
280
.
25.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Re = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.
You do not currently have access to this content.