Entropy generation due to natural convection has been calculated for a wide range of Rayleigh number (Ra) in both laminar (104 ≤ Ra ≤ 108) and turbulent (1010 ≤ Ra ≤ 1012) flow regimes, for diameter ratio of 2 ≤ D/d ≤ 5, for an isothermal vertical cylinder fitted with annular fins. In the laminar regime, the entropy generation was predominantly caused by heat transfer (conduction and convection) and the viscous contribution was negligible with respect to heat transfer. But in the turbulent regime, entropy generation due to fluid friction is significant enough although heat transfer entropy generation is still dominant. The results demonstrate that the degree of irreversibility is higher in case of finned configuration when compared with unfinned one. With the deployment of a merit function combining the first and second laws of thermodynamics, we have tried to delineate the thermodynamic performance of finned cylinder with natural convection. So, we have defined the ratio (I/Q)finned/(I/Q)unfinned. The ratio (I/Q)finned/(I/Q)unfinned gets its minimum value at optimum fin spacing where maximum heat transfer occurs in turbulent flow, whereas in laminar flow the ratio (I/Q)finned/(I/Q)unfinned decreases continuously with the increase in number of fins.

References

References
1.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
2.
Kreith
,
F.
,
Manglik
,
R. M.
, and
Bohn
,
M. S.
,
2011
,
Principles of Heat Transfer
,
7th ed.
,
Cengage
,
Independence, KY
.
3.
Güvenç
,
A.
, and
Yüncü
,
H.
,
2001
, “
An Experimental Investigation on Performance of Fins on a Horizontal Base in Free Convection Heat Transfer
,”
Heat Mass Transfer
,
37
(4), pp.
409
416
.
4.
Yazicioǧlu
,
B.
, and
Yüncü
,
H.
,
2007
, “
Optimum Fin Spacing of Rectangular Fins on a Vertical Base in Free Convection Heat Transfer
,”
Heat Mass Transfer
,
44
(
1
), pp.
11
21
.
5.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
6.
Kuhen
,
T. H.
,
Kwon
,
S. S.
, and
Topadi
,
A. K.
,
1983
, “
Similarity Solution for Conjugate Natural Convection Heat Transfer From a Long Vertical Plate Fin
,”
Int. J. Heat Mass Transfer
,
26
(
11
), pp.
1718
1721
.
7.
Abu-Hijleh
,
B.
,
Abu-Qudais
,
M.
, and
Abu Nada
,
E.
,
1999
, “
Numerical Prediction of Entropy Generation Due to Natural Convection From a Horizontal Cylinder
,”
Energy
,
24
(
4
), pp.
327
333
.
8.
Abu-Hijleh
,
B. A. K.
, and
Heilen
,
W. N.
,
1999
, “
Entropy Generation Due to Laminar Natural Convection Over a Heated Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
42
(
22
), pp.
4225
4233
.
9.
Baytas
,
A. C.
,
2000
, “
Entropy Generation for Natural Convection in an Inclined Porous Cavity
,”
Int. J. Heat Mass Transfer
,
43
(
12
), pp.
2089
2099
.
10.
Abu-Hijleh
,
B.
,
2001
, “
Natural Convection and Entropy Generation From a Cylinder With High Conductivity Fins
,”
Numer. Heat Transfer, Part A
,
39
(
4
), pp.
405
432
.
11.
Mahmud
,
S.
, and
Islam
,
A. K. M. S.
,
2003
, “
Laminar Free Convection and Entropy Generation Inside an Inclined Wavy Enclosure
,”
Int. J. Therm. Sci.
,
42
(
11
), pp.
1003
1012
.
12.
Magherbi
,
M.
,
Abbassi
,
H.
, and
Brahim
,
A. B.
,
2003
, “
Entropy Generation at the Onset of Natural Convection
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3441
3450
.
13.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2004
, “
Magnetohydrodynamic Free Convection and Entropy Generation in a Square Porous Cavity
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3245
3256
.
14.
Daǧtekin
,
I.
,
Öztop
,
H. F.
, and
Şahin
,
A. Z.
,
2005
, “
An Analysis of Entropy Generation Through a Circular Duct With Different Shaped Longitudinal Fins for Laminar Flow
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
171
181
.
15.
Andreozzi
,
A.
,
Auletta
,
A.
, and
Manca
,
O.
,
2006
, “
Entropy Generation in Natural Convection in a Symmetrically and Uniformly Heated Vertical Channel
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3221
3228
.
16.
Jery
,
A. E.
,
Hidouri
,
N.
,
Magherbi
,
M.
, and
Brahim
,
A. B.
,
2010
, “
Effect of an External Oriented Magnetic Field on Entropy Generation in Natural Convection
,”
Entropy
,
12
(
6
), pp.
1391
1417
.
17.
Dagtekin
,
I.
,
Oztop
,
H. F.
, and
Bahloul
,
A.
,
2007
, “
Entropy Generation for Natural Convection in Γ-Shaped Enclosures
,”
Int. Commun. Heat Mass Transfer
,
34
(
4
), pp.
502
510
.
18.
Famouri
,
M.
, and
Hooman
,
K.
,
2008
, “
Entropy Generation for Natural Convection by Heated Partitions in a Cavity
,”
Int. Commun. Heat Mass Transfer
,
35
(
4
), pp.
492
502
.
19.
Zahmatkesh
,
I.
,
2008
, “
On the Importance of Thermal Boundary Conditions in Heat Transfer and Entropy Generation for Natural Convection Inside a Porous Enclosure
,”
Int. J. Therm. Sci.
,
47
(
3
), pp.
339
346
.
20.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Koca
,
A.
,
2008
, “
Entropy Generation Due to Conjugate Natural Convection in Enclosures Bounded by Vertical Solid Walls With Different Thicknesses
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
648
656
.
21.
Oliveski
,
R. D. C.
,
Macagnan
,
M. H.
, and
Copetti
,
J. B.
,
2009
, “
Entropy Generation and Natural Convection in Rectangular Cavities
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1417
1425
.
22.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Pop
,
I.
,
2009
, “
Entropy Generation Due to Natural Convection in Non-Uniformly Heated Porous Isosceles Triangular Enclosures at Different Positions
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1193
1205
.
23.
García
,
J. C. C.
, and
Treviño
,
C. T.
,
2010
, “
Natural Convection and Entropy Generation in a Small Aspect Ratio Cavity
,”
Mecánica Comput.
,
XXIX
, pp.
3281
3289
.http://www.cimec.org.ar/ojs/index.php/mc/article/viewFile/3232/3155
24.
Mukhopadhyay
,
A.
,
2010
, “
Analysis of Entropy Generation Due to Natural Convection in Square Enclosures With Multiple Discrete Heat Sources
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
867
872
.
25.
Shahi
,
M.
,
Mahmoudi
,
A. H.
, and
Raouf
,
A. H.
,
2011
, “
Entropy Generation Due to Natural Convection Cooling of a Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
972
983
.
26.
Kaluri
,
R. S.
, and
Basak
,
T.
,
2011
, “
Analysis of Entropy Generation for Distributed Heating in Processing of Materials by Thermal Convection
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2578
2594
.
27.
Kaluri
,
R. S.
, and
Basak
,
T.
,
2011
, “
Entropy Generation Due to Natural Convection in Discretely Heated Porous Square Cavities
,”
Energy
,
36
(
8
), pp.
5065
5080
.
28.
Bouabid
,
M.
,
Magherbi
,
M.
,
Hidouri
,
N.
, and
Brahim
,
A. B.
,
2011
, “
Entropy Generation at Natural Convection in an Inclined Rectangular Cavity
,”
Entropy
,
13
(
12
), pp.
1020
1033
.
29.
Sheikhzadeh
,
G. A.
,
Nikfar
,
M.
, and
Fattahi
,
A.
,
2012
, “
Numerical Study of Natural Convection and Entropy Generation of Cu-Water Nanofluid Around an Obstacle in a Cavity
,”
J. Mech. Sci. Technol.
,
26
(
10
), pp.
3347
3356
.
30.
Basak
,
T.
,
Kaluri
,
R. S.
, and
Balakrishnan
,
A. R.
,
2012
, “
Entropy Generation During Natural Convection in a Porous Cavity: Effect of Thermal Boundary Conditions
,”
Numer. Heat Transfer, Part A
,
62
(
4
), pp.
336
364
.
31.
Basak
,
T.
,
Gunda
,
P.
, and
Anandalakshmi
,
R.
,
2012
, “
Analysis of Entropy Generation During Natural Convection in Porous Right-Angled Triangular Cavities With Various Thermal Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4521
4535
.
32.
Singh
,
A. K.
,
Roy
,
S.
, and
Basak
,
T.
,
2012
, “
Analysis of Entropy Generation Due to Natural Convection in Tilted Square Cavities
,”
Ind. Eng. Chem. Res.
,
51
(
40
), pp.
13300
13318
.
33.
Esmaeilpour
,
M.
, and
Abdollahzadeh
,
M.
,
2012
, “
Free Convection and Entropy Generation of Nanofluid Inside an Enclosure With Different Patterns of Vertical Wavy Walls
,”
Int. J. Therm. Sci.
,
52
, pp.
127
136
.
34.
Mchirgui
,
A.
,
Hidouri
,
N.
,
Magherbi
,
M.
, and
Ben Brahim
,
A.
,
2013
, “
Entropy Generation for Natural Convection in a Darcy–Brinkman Porous Cavity
,”
Int. Sch. Sci. Res. Innovation
,
7
(
4
), pp.
600
604
.http://waset.org/publications/8320/entropy-generation-for-natural-convection-in-a-darcy-brinkman-porous-cavity
35.
Pati
,
S.
,
Som
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Thermodynamic Performance of Microscale Swirling Flows With Interfacial Slip
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
397
401
.
36.
Salari
,
M.
,
Rezvani
,
A.
,
Mohammadtabar
,
A.
, and
Mohammadtabar
,
M.
,
2014
, “
Numerical Study of Entropy Generation for Natural Convection in Rectangular Cavity With Circular Corners
,”
Heat Transfer Eng.
,
36
(
2
), pp.
186
199
.
37.
Naas
,
T. T.
,
Lasbet
,
Y.
, and
Kezrane
,
C.
,
2015
, “
Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure
,”
International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering
,
9
(
4
), pp.
582
586
.http://www.waset.org/publications/10001025
38.
Selimefendigil
,
F.
,
Öztop
,
H.
, and
Abu-Hamdeh
,
N.
,
2016
, “
Natural Convection and Entropy Generation in Nanofluid Filled Entrapped Trapezoidal Cavities Under the Influence of Magnetic Field
,”
Entropy
,
18
(
2
),
p. 43
.
39.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.
40.
Shuja
,
S. Z.
,
Yilbas
,
B. S.
, and
Budair
,
M. O.
,
2001
, “
Local Entropy Generation in an Impinging Jet: Minimum Entropy Concept Evaluating Various Turbulence Models
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
28
), pp.
3623
3644
.
41.
Chen
,
S.
, and
Krafczyk
,
M.
,
2009
, “
Entropy Generation in Turbulent Natural Convection Due to Internal Heat Generation
,”
Int. J. Therm. Sci.
,
48
(
10
), pp.
1978
1987
.
42.
Şahin
,
A. Z.
,
2000
, “
Entropy Generation in Turbulent Liquid Flow Through a Smooth Duct Subjected to Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
43
(
8
), pp.
1469
1478
.
43.
Sahin
,
A. Z.
,
2002
, “
Entropy Generation and Pumping Power in a Turbulent Fluid Flow Through a Smooth Pipe Subjected to Constant Heat Flux
,”
Exergy Int. J.
,
2
(
4
), pp.
314
321
.
44.
Tandiroglu
,
A.
,
2007
, “
Effect of Flow Geometry Parameters on Transient Entropy Generation for Turbulent Flow in Circular Tube With Baffle Inserts
,”
Energy Convers. Manag.
,
48
(
3
), pp.
898
906
.
45.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.
46.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow.
,
26
(
4
), pp.
672
680
.
47.
Singh
,
B.
, and
Dash
,
S. K.
,
2015
, “
Natural Convection Heat Transfer From a Finned Sphere
,”
Int. J. Heat Mass Transfer
,
81
, pp.
305
324
.
48.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2016
, “
3D Numerical Study of the Effect of Eccentricity on Heat Transfer Characteristics Over Horizontal Cylinder Fitted With Annular Fins
,”
Int. J. Therm. Sci.
,
108
, pp.
28
39
.
49.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Numerical Investigation of Natural Convection Heat Transfer From Vertical Cylinder With Annular Fins
,”
Int. J. Therm. Sci.
,
111
, pp.
146
159
.
50.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
New York
.
51.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
52.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2016
, “
Numerical Investigation of Natural Convection Heat Transfer Over Annular Finned Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
96
, pp.
330
345
.
53.
Gebhart
,
B.
,
Jaluria
,
Y.
,
Mahajan
,
R. L.
, and
Sammakia
,
B.
,
1988
,
Buoyancy-Induced Flows and Transport
,
Hemisphere
,
New York
.
54.
Minkowycz
,
W.
, and
Sparrow
,
E.
,
1974
, “
Local Nonsimilar Solutions for Natural Convection on a Vertical Cylinder
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
178
183
.
55.
Churchill
,
S. W.
,
1977
, “
A Comprehensive Correlating Equation for Laminar, Assisting, Forced and Free Convection
,”
AIChE J.
,
23
(
1
), pp.
10
16
.
56.
McAdams
,
W. H.
,
1954
,
Heat Transmission
,
3rd ed.
,
McGraw-Hill
,
New York
.
57.
Eckert
,
E. R. G.
, and
Jackson
,
T. W.
,
1951
, “
Analysis of Turbulent Free-Convection Boundary Layer on Flat Plate
,”
U.S. National Advisory Committee for Aeronautics
, Report No. NACA-TR-1015.https://ntrs.nasa.gov/search.jsp?R=19930092070
58.
Nag
,
P. K.
,
2007
,
Heat and Mass Tranfer
,
2nd ed.
,
Tata McGraw-Hill
,
Delhi, India
.
You do not currently have access to this content.