Steady-state heat transfer through a rarefied gas confined between parallel plates or coaxial cylinders, whose surfaces are maintained at different temperatures, is investigated using the nonlinear Shakhov (S) model kinetic equation and Direct Simulation Monte Carlo (DSMC) technique in the slip regime. The profiles of heat flux and temperature are reported for different values of gas rarefaction parameter δ, ratios of hotter to cooler surface temperatures T, and inner to outer radii ratio R. The results of S-model kinetic equation and DSMC technique are compared to the numerical and analytical solutions of the Fourier equation subjected to the Lin and Willis temperature-jump boundary condition. The analytical expressions are derived for temperature and heat flux for both geometries with hotter and colder surfaces having different values of the thermal accommodation coefficient. The results of the comparison between the kinetic and continuum approaches showed that the Lin and Willis temperature-jump model accurately predicts heat flux and temperature profiles for small temperature ratio T=1.1 and large radius ratios R0.5; however, for large temperature ratio, a pronounced disagreement is observed.

References

References
1.
U.S. Dept. of Energy, Office of Civilian Radioactive Waste Management (OCRWM)
,
1987
, “
Characteristics of Spent Nuclear Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation
,” Report No. DOE/RW-0184.
2.
Saling
,
J. H.
, and
Fentiman
,
A.
,
2002
,
Radioactive Waste Management
,
2nd ed.
,
Taylor and Francis
,
New York
.
3.
Colmont
,
D.
, and
Roblin
,
P.
,
2008
, “
Improved Thermal Modeling of SNF Shipping Cask Drying Process Using Analytical and Statistical Approaches
,”
Packag. Transp. Storage Secur. Radioact. Mater.
,
19
(
3
), pp.
160
164
.
4.
USNRC staff
,
2003
, “
Cladding Considerations for the Transportation and Storage of Spent Fuel
,”
U.S. Nuclear Regulatory Commission
, Memorandum No. 11, Revision No. 3.http://www.nrc.gov/reading-rm/doc-collections/isg/isg-11R3.pdf
5.
Kennard
,
E. H.
,
1938
,
Kitetic Theory of Gases
,
McGraw-Hill
,
New York
.
6.
Shakhov
,
E. M.
,
1968
, “
Generalization of the Krook Kinetic Relaxation Equation
,”
Fluid Dyn.
,
3
(
5
), pp.
95
96
.
7.
Graur
,
I. A.
, and
Polikarpov
,
A.
,
2009
, “
Comparison of Different Kinetic Models for the Heat Transfer Problem
,”
Heat Mass Transfer
,
46
(
2
), pp.
237
244
.
8.
Graur
,
I.
,
Ho
,
M. T.
, and
Wuest
,
M.
,
2013
, “
Simulation of the Transient Heat Transfer Between Two Coaxial Cylinders
,”
J. Vac. Sci. Technol. A
,
31
(
6
), p.
061603
.
9.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford Science Publications, Oxford University Press
,
New York
.
10.
Cercignani
,
C.
,
1990
,
Mathematical Methods in Kinetic Theory
,
Premuim Press
,
New York
.
11.
Kogan
,
M. N.
,
1969
,
Rarefied Gas Dynamics
,
Plenum Press
,
New York
.
12.
Lin
,
J. T.
, and
Willis
,
D. R.
,
1972
, “
Kinetic Theory Analysis of Temperature Jump in a Polyatomic Gas
,”
Phys. Fluids
,
15
(
1
), pp.
31
38
.
13.
Morse
,
T. F.
,
1964
, “
Kinetic Model for Gases With Internal Degrees of Freedom
,”
Phys. Fluids
,
7
(
2
), pp.
159
169
.
14.
Holway
,
L. H.
,
1966
, “
New Statistical Models in Kinetic Theory: Methods of Construction
,”
Phys. Fluids
,
9
(
9
), pp.
1658
1673
.
15.
Welander
,
P.
,
1954
, “
On the Temperature Jump in a Rarefied Gas
,”
Ark. Fys.
,
7
(
5
), pp.
507
553
.
16.
Graur
,
I.
, and
Ho
,
M. T.
,
2014
, “
Rarefied Gas Flow Through a Long Rectangular Channel of Variable Cross Section
,”
Vacuum
,
101
, pp.
328
332
.
17.
Sone
,
Y.
, and
Sugimoto
,
H.
,
1995
, “
Evaporation of a Rarefied Gas From a Cylindrical Condensed Phase Into a Vacuum
,”
Phys. Fluids
,
7
(8), p.
2072
.
18.
Larina
, I
. N.
, and
Rykov
, V
. A.
,
1998
, “
A Numerical Method for Calculating Axisymmetric Rarefied Gas Flows
,”
Comput. Math. Math. Phys.
,
38
(
8
), pp.
1335
1346
.
19.
Shakhov
,
E. M.
, and
Titarev
, V
. A.
,
2009
, “
Numerical Study of the Generalized Cylindrical Couette Flow of Rarefied Gas
,”
Eur. J. Mech. B/Fluids
,
28
(
1
), pp.
152
169
.
20.
Hsu
,
S. K.
, and
Morse
,
T. F.
,
1972
, “
Kinetic Theory of Parallel Plate Heat Transfer in a Polyatomic Gas
,”
Phys. Fluids
,
15
(
4
), pp.
584
591
.
21.
Stefanov
,
S.
,
Gospodinov
,
P.
, and
Cercignani
,
C.
,
1998
, “
Monte Carlo Simulation and Navier-Stokes Finite Difference Solution of Rarefied Gas Flow Problems
,”
Phys. Fluids
,
10
(
1
), pp.
289
300
.
22.
Gallis
,
M. A.
,
Torczynski
,
J. R.
,
Rader
,
D. J.
, and
Bird
,
G. A.
,
2009
, “
Convergence Behavior of a New DSMC Algorithm
,”
J. Comput. Phys.
,
228
(
12
), pp.
4532
4548
.
23.
Stefanov
,
S. K.
,
2011
, “
On DSMC Calculations of Rarefied Gas Flows With Small Number of Particles in Cells
,”
SIAM J. Sci. Comp.
,
33
(
2
), pp.
677
702
.
24.
Hadjiconstantinou
,
N. G.
,
Garcia
,
A. L.
,
Bazant
,
M. Z.
, and
He
,
G.
,
2003
, “
Statistical Error in Particle Simulations of Hydrodynamic Phenomena
,”
J. Comput. Phys.
,
187
(
1
), pp.
274
297
.
25.
Schaaf
,
S. A.
, and
Chambre
,
P. L.
,
1958
, “
Flow of Rarefied Gases
,”
Fundamental of Gasdynamics
,
H. W.
Edmmons
, ed., Vol.
III
.,
Princeton University Press
,
Princeton, NJ
, pp.
687
739
.
26.
Akhlaghi
,
H.
,
Roohi
,
E.
, and
Stefanov
,
S.
,
2012
, “
A Newiterative Wall Heat Flux Specifying Technique in DSMC for Heating/Cooling Simulations of MEMS/NEMS
,”
Int. J. Therm. Sci
,
59
, pp.
111
125
.
27.
Meng
,
J.
,
Zhang
,
Y.
, and M. R. J.,
2015
, “
Numerical Simulation of Rarefied Gas Flows With Specified Heat Flux Boundary Conditions
,”
Commun. Comput. Phys.
,
17
(
5
), pp.
1185
1200
.
You do not currently have access to this content.