We report numerical study of film boiling around hot and horizontal cylinders in a saturated water pool to establish interfacial interactions leading toward dryout. Volume of fluid-based finite-volume discretization is performed in the domain for incorporation of source term in mass momentum and energy conservation equations due to phase change. At first, film boiling around single cylinder is simulated at different surface temperatures to understand unconstrained film growth and subsequent film bubble release due to buoyancy. Using velocity vectors and temperature contours, effect of film flow dynamics on bubble departure is depicted. This study has been extended further with multiple cylinders in three different stacking arrangements in order to understand the interaction of films in vicinity. Vertical interaction between cylinders leads to suppression of bubble release at the lower cylinder in comparison to the upper one. In the case of horizontal interactions, bubbles attract each other and merge, provided favorable pitch between cylinders and temperatures of the surfaces is maintained. Offset four cylinders stack maintaining vertical and horizontal pitch allows both lateral vapor affinity and bubble suppression in the lower most cylinder simultaneously. With time interaction of accumulated vapor films around cylinders hinders replenishment of fresh liquid to the hot surfaces leading toward chaotic phenomena or dryout in boiling heat transfer.

References

1.
Bromley
,
L. A.
,
1950
, “
Heat Transfer in Stable Film Boiling
,”
Chem. Eng. Prog.
,
46
(
5
), pp.
221
227
.
2.
Breen
,
B. P.
, and
Westwater
,
J. W.
,
1962
, “
Effect of Diameter of Horizontal Tubes on Film Boiling Heat Transfer
,”
Chem. Eng. Prog.
,
58
(
7
), pp.
67
72
.
3.
Nishikawa
,
K.
,
Ito
,
T.
, and
Kuroki
,
T.
,
1972
, “
Pool Film Boiling Heat Transfer From a Horizontal Cylinder to Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
15
(4), pp.
853
862
.
4.
Welch
,
S. W. J.
,
1995
, “
Local Simulation of Two-Phase Flows Including Interface Tracking With Mass Transfer
,”
J. Comput. Phys.
,
121
(1), pp.
142
154
.
5.
Son
,
G.
, and
Dhir
, V
. K.
,
1997
, “
Numerical Simulation of Saturated Film Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
525
533
.
6.
Son
,
G.
, and
Dhir
, V
. K.
,
1998
, “
Numerical Simulation of Film Boiling Near Critical Pressures With a Level Set Method
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
183
192
.
7.
Juric
,
D.
, and
Tryggvason
,
G.
,
1998
, “
Computations of Boiling Flows
,”
Int. J. Multiphase Flow
,
24
(
3
), pp.
387
410
.
8.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
(
1
), pp.
25
37
.
9.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
106
(2), pp.
662
682
.
10.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
2004
, “
A Front Tracking Method for Computations of Boiling in Complex Geometries
,”
Int. J. Multiphase Flow
,
30
(
7–8
), pp.
1037
1050
.
11.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
2004
, “
Computations of Film Boiling—Part I: Numerical Method
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5451
5461
.
12.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
2004
, “
Computations of Film Boiling—Part II: Numerical Method
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5463
5476
.
13.
Nishikawa
,
K.
,
Ito
,
T.
,
Kuroki
,
T.
, and
Matsumoto
,
K.
,
1972
, “
Pool Film Boiling Heat Transfer From a Horizontal Cylinder to Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
15
(4), pp.
853
862
.
14.
Lienhard
,
J. H.
, and
Sun
,
K. H.
,
1970
, “
Effects of Gravity and Size Upon Film boiling From Horizontal Cylinders
,”
ASME J. Heat Transfer
,
92
(
2
), pp.
292
298
.
15.
Bang
,
K. H.
,
1994
, “
Numerical Prediction of Forced Convection Film Boiling Heat Transfer From a Sphere
,”
Int. J. Heat Mass Transfer
,
37
(
16
), pp.
2415
2424
.
16.
Tou
,
S. K. W.
, and
Tso
,
C. P.
,
1997
, “
Improvement on the Modelling of Film Boiling on Spheres
,”
Int. Commun. Heat Mass Transfer
,
24
(
6
), pp.
879
888
.
17.
Welch Samuel
,
W. J.
,
1998
, “
Direct Simulation of Vapor Bubble Growth
,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1655
1666
.
18.
Son
,
G.
,
Ramanujapu
,
N.
, and
Dhir
,
V. K.
,
2001
, “
Numerical Simulation of Bubble Merger Process on a Single Nucleation Site During Pool Nucleate Boiling
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
51
62
.
19.
He
,
Y.
,
Shoji
,
M.
, and
Maruyama
,
S.
,
2001
, “
Numerical Study of High Heat Flux Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
44
(
12
), pp.
2357
2373
.
20.
Mukherjee
,
A.
, and
Dhir
, V
. K.
,
2005
, “
Study of Lateral Merger of Vapor Bubbles During Nucleate Pool Boiling
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
1023
1039
.
21.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2005
, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling—Part 1: Model Development
,”
ASME J. Heat Transfer
,
127
(
2
), pp.
131
140
.
22.
Yuan
,
M. H.
,
Yang
,
Y. H.
,
Li
,
T. S.
, and
Hu
,
Z. H.
,
2008
, “
Numerical Simulation of Film Boiling on a Sphere With a Volume of Fluid Interface Tracking Method
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1646
1657
.
23.
Jouhara
,
H.
, and
Axcell Brian
,
P.
,
2009
, “
Film Boiling Heat Transfer and Vapour Film Collapse on Spheres, Cylinders and Plane Surfaces
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
1885
1900
.
24.
Malmazet
,
E. D.
, and
Berthoud
,
G.
,
2009
, “
Convection Film Boiling on Horizontal Cylinders
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4731
4747
.
25.
Sarma
,
P. K.
,
Srinivas
,
V.
,
Sharma
,
K. V.
, and
Dharma Rao
,
V.
,
2010
, “
Correlation for Heat Transfer in Nucleate Boiling on Horizontal Cylindrical Surface
,”
Heat Transfer Eng.
,
31
(
6
), pp.
449
457
.
26.
Ciloglu
,
D.
,
Bolukbasi
,
A.
, and
Comakli
,
K.
,
2012
, “
Effect of Nanofluids on the Saturated Pool Film Boiling
,”
Int. J. Mech., Aerosp. Ind. Mechatronic Manuf. Eng.
,
6
(
7
), pp.
1122
1124
.
27.
Arévalo
,
R.
,
Antúnez
,
D.
,
Rebollo
,
L.
, and
Abánades
,
A.
,
2014
, “
Estimation of Radiation Coupling Factors in Film Boiling Around Spheres by Mean of Computational Fluid Dynamics (CFD) Tools
,”
Int. J. Heat Mass Transfer
,
78
, pp.
84
89
.
28.
Das
,
A. K.
, and
Das
,
P. K.
,
2015
, “
Modeling of Liquid–Vapor Phase Change Using Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
303
, pp.
125
145
.
29.
ANSYS
,
2012
, “
FLUENT R14.5 User's Guide
,” ANSYS, Inc., Canonsburg, PA.
You do not currently have access to this content.