In this technical brief, the application of infrared thermal imaging to investigate melting of a phase-change material (PCM) filled in an open-cell metal foam was proposed. Melting experiments in a rectangular cell were performed with paraffin/copper foam composite samples having a single pore size of 15 ppi. The visualized study at the pore-scale was enabled using an infrared video camera equipped with a macrolens, offering a resolution of 50 μm. The transient thermal imaging results were first validated against the temperature readings by a pre-installed thermocouple. A relative deviation below 4% was observed between the two methods over the entire course of melting. The local thermal nonequilibrium between a copper ligament and its surrounding paraffin was found to become more pronounced as melting proceeds, which could reach up to the order of 10 °C during the late stage of melting. The quantitative observation of the local thermal nonequilibrium effect may facilitate improvement of the existing two-temperature models for numerical simulations on melting of PCM enhanced by embedding metal foams.

References

References
1.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.
2.
Lu
,
T.
,
Stone
,
H.
, and
Ashby
,
M.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.
3.
Hong
,
S. T.
, and
Herling
,
D. R.
,
2007
, “
Effects of Surface Area Density of Aluminum Foams on Thermal Conductivity of Aluminum Foam-Phase Change Material Composites
,”
Adv. Eng. Mater.
,
9
(
7
), pp.
554
557
.
4.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Shaikh
,
S.
,
2007
, “
Experimental Study on the Influence of Foam Porosity and Pore Size on the Melting of Phase Change Materials
,”
J. Appl. Phys.
,
102
(
8
), p.
083549
.
5.
Zhou
,
D.
, and
Zhao
,
C. Y.
,
2011
, “
Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
970
977
.
6.
Li
,
W. Q.
,
Qu
,
Z. G.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2012
, “
Experimental and Numerical Studies on Melting Phase Change Heat Transfer in Open-Cell Metallic Foams Filled With Paraffin
,”
Appl. Therm. Eng.
,
37
, pp.
1
9
.
7.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2005
, “
A Two-Temperature Model for Solid–Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
995
1004
.
8.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Melting of Phase Change Materials With Volume Change in Metal Foams
,”
ASME J. Heat Transfer
,
132
(
6
), p.
062301
.
9.
Hu
,
X.
,
Wan
,
H.
, and
Patnaik
,
S. S.
,
2015
, “
Numerical Modeling of Heat Transfer in Open-Cell Micro-Foam With Phase Change Material
,”
Int. J. Heat Mass Transfer
,
88
, pp.
617
626
.
10.
Feng
,
S.
,
Shi
,
M.
,
Li
,
Y.
, and
Lu
,
T. J.
,
2015
, “
Pore-Scale and Volume-Averaged Numerical Simulations of Melting Phase Change Heat Transfer in Finned Metal Foam
,”
Int. J. Heat Mass Transfer
,
90
, pp.
838
847
.
11.
Feng
,
S.
,
Zhang
,
Y.
,
Shi
,
M.
,
Wen
,
T.
, and
Lu
,
T. J.
,
2015
, “
Unidirectional Freezing of Phase Change Materials Saturated in Open-Cell Metal Foams
,”
Appl. Therm. Eng.
,
88
, pp.
315
321
.
12.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tian
,
Y.
,
2010
, “
Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded Within Phase Change Materials (PCMs)
,”
Sol. Energy
,
84
(
8
), pp.
1402
1412
.
13.
Chen
,
Z.
,
Gao
,
D.
, and
Shi
,
J.
,
2014
, “
Experimental and Numerical Study on Melting of Phase Change Materials in Metal Foams at Pore Scale
,”
Int. J. Heat Mass Transfer
,
72
, pp.
646
655
.
You do not currently have access to this content.