Traditionally, the numerical computation of particle motion in a fluid is resolved through computational fluid dynamics (CFD). However, resolving the motion of nanoparticles poses additional challenges due to the coupling between the Brownian and hydrodynamic forces. Here, we focus on the Brownian motion of a nanoparticle coupled to adhesive interactions and confining-wall-mediated hydrodynamic interactions. We discuss several techniques that are founded on the basis of combining CFD methods with the theory of nonequilibrium statistical mechanics in order to simultaneously conserve thermal equipartition and to show correct hydrodynamic correlations. These include the fluctuating hydrodynamics (FHD) method, the generalized Langevin method, the hybrid method, and the deterministic method. Through the examples discussed, we also show a top-down multiscale progression of temporal dynamics from the colloidal scales to the molecular scales, and the associated fluctuations, hydrodynamic correlations. While the motivation and the examples discussed here pertain to nanoscale fluid dynamics and mass transport, the methodologies presented are rather general and can be easily adopted to applications in convective heat transfer.

References

References
1.
Yasuda
,
S.
, and
Yamamoto
,
R.
,
2008
, “
A Model for Hybrid Simulations of Molecular Dynamics and Computational Fluid Dynamics
,”
Phys. Fluids
,
20
(
11
), p.
113101
.
2.
Yasuda
,
S.
, and
Yamamoto
,
R.
,
2010
, “
Multiscale Modeling and Simulation for Polymer Melt Flows Between Parallel Plates
,”
Phys. Rev. E
,
81
(
3
), p.
036308
.
3.
Ayyaswamy
,
P. S.
,
Muzykantov
,
V.
,
Eckmann
,
D. M.
, and
Radhakrishnan
,
R.
,
2013
, “
Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
1
), pp.
101011
1010115
.
4.
Swaminathan
,
T. N.
,
Liu
,
J.
,
Balakrishnan
,
U.
,
Ayyaswamy
,
P. S.
,
Radhakrishnan
,
R.
, and
Eckmann
,
D. M.
,
2011
, “
Dynamic Factors Controlling Carrier Anchoring on Vascular Cells
,”
IUBMB Life
,
63
(
8
), pp.
640
647
.
5.
Muzykantov
,
V.
,
Radhakrishnan
,
R.
, and
Eckmann
,
D. M.
,
2012
, “
Dynamic Factors Controlling Targeting Nanocarriers to Vascular Endothelium
,”
Curr. Drug Metab.
,
113
, pp.
70
81
.
6.
Agrawal
,
N. J.
, and
Radhakrishnan
,
R.
,
2007
, “
The Role of Glycocalyx in Nanocarrier-Cell Adhesion Investigated Using a Thermodynamic Model and Monte Carlo Simulations
,”
J. Phys. Chem. C: Nanomater. Interfaces
,
111
(
43
), pp.
15848
15856
.
7.
Liu
,
J.
,
Weller
,
G. E. R.
,
Zern
,
B.
,
Ayyaswamy
,
P. S.
,
Eckmann
,
D. M.
,
Muzykantov
,
V. R.
, and
Radhakrishnan
,
R.
,
2010
, “
A Computational Model for Nanocarrier Binding to Endothelium Validated Using in vivo, in vitro, and Atomic Force Microscopy Experiments
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
38
), pp.
16530
16535
.
8.
Liu
,
J.
,
Agrawal
,
N. J.
,
Calderon
,
A.
,
Ayyaswamy
,
P. S.
,
Eckmann
,
D. M.
, and
Radhakrishnan
,
R.
,
2011
, “
Multivalent Binding of Nanocarrier to Endothelial Cells Under Shear Flow
,”
Biophys. J.
,
101
(
2
), pp.
319
326
.
9.
Sarkar
,
A.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2015
, “
Hydrodynamic Interactions of Deformable Polymeric Nanocarriers and the Effect of Crosslinking
,”
Soft Matter
,
11
(
29
), pp.
5955
5969
.
10.
Ramakrishnan
,
N.
,
Eckmann
,
D.
,
Ayyaswamy
,
P.
,
Muzykantov
,
V.
, and
Radhakrishnan
,
R.
,
2016
, “
Biophysically Inspired Model for Functionalized Nanocarrier Targeting to Live Cells
,”
R. Soc. Open Sci.
,
3
(
6
), p.
160260
.
11.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
,
2008
, “
Thermal Conductance of Fluids: Is the Controversy Over?
,”
J. Nanopart. Res.
,
10
(
7
), pp.
1089
1097
.
12.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
,
2006
, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
,
89
(
13
), p.
133108
.
13.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
, Singh, Pawan K.,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Bench Mark Study of the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.
14.
Kubo
,
R.
,
1966
, “
The Fluctuation-Dissipation Theorem
,”
Rep. Prog. Phys.
,
29
(
1
), pp.
255
284
.
15.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Fluid Mechanics
,
Pergamon Press
,
London
.
16.
Sharma
,
N.
, and
Patankar
,
N. A.
,
2004
, “
Direct Numerical Simulation of the Brownian Motion of Particles by Using Fluctuating Hydrodynamic Equations
,”
J. Comput. Phys.
,
201
(
2
), pp.
466
486
.
17.
Donev
,
A.
,
Vanden-Eijnden
,
E.
,
Garcia
,
A. L.
, and
Bell
,
J. B.
,
2010
, “
On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics
,”
Commun. Appl. Math. Comput. Sci.
,
5
(
2
), pp.
149
197
.
18.
Bell
,
J.
,
Garcia
,
A.
, and
Williams
,
S.
,
2007
, “
Numerical Methods for the Stochastic Landau-Lifshitz Navier-Stokes Equations
,”
Phys. Rev. E
,
76
(
1
), p.
016708
.
19.
Williams
,
S.
,
Bell
,
J.
, and
Garcia
,
A.
,
2008
, “
Algorithm Refinement for Fluctuating Hydrodynamics
,”
Multiscale Model. Simul.
,
6
(
4
), pp.
1256
1280
.
20.
Ladd
,
A. J. C.
,
1993
, “
Short-Time Motion of Colloidal Particles: Numerical Simulation Via a Fluctuating Lattice-Boltzmann Equation
,”
Phys. Rev. Lett.
,
70
(
9
), pp.
1339
1342
.
21.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions Via a Discretized Boltzmann Equation. Part 1. Theoretical Foundation
,”
J. Fluid Mech.
,
271
, pp.
285
309
.
22.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions Via a Discretized Boltzmann Equation. Part 2. Numerical Results
,”
J. Fluid Mech.
,
271
, pp.
311
339
.
23.
Patankar
,
N. A.
,
2002
, “
Direct Numerical Simulation of Moving Charged, Flexible Bodies With Thermal Fluctuations
,”
2002 International Conference on Computational Nanoscience and Nanotechnology
,
Nano Science and Technology Institute
, Vol.
2
, pp.
93
96
.
24.
Adhikari
,
R.
,
Stratford
,
K.
,
Cates
,
M. E.
, and
Wagner
,
A. J.
,
2005
, “
Fluctuating Lattice–Boltzmann
,”
EPL (Europhys. Lett.)
,
71
(
3
), pp.
473
479
.
25.
Dünweg
,
B.
, and
Ladd
,
A. J. C.
,
2008
, “
Lattice–Boltzmann Simulations of Soft Matter Systems
,”
Adv. Polym. Sci.
,
221
, pp.
89
166
.
26.
Nie
,
D.
, and
Lin
,
J.
,
2009
, “
A Fluctuating Lattice-Boltzmann Model for Direct Numerical Simulation of Particle Brownian Motion
,”
Particuology
,
7
(
6
), pp.
501
506
.
27.
Iwashita
,
T.
,
Nakayama
,
Y.
, and
Yamamoto
,
R.
,
2009
, “
Velocity Autocorrelation Function of Fluctuating Particles in Incompressible Fluids
,”
Prog. Theor. Phys.
,
178
, pp.
86
91
.
28.
Iwashita
,
T.
,
Nakayama
,
Y.
, and
Yamamoto
,
R.
,
2008
, “
A Numerical Model for Brownian Particles Fluctuating in Incompressible Fluids
,”
J. Phys. Soc. Jpn.
,
77
(
7
), p.
074007
.
29.
Atzberger
,
P. J.
,
Kramer
,
P. R.
, and
Peskin
,
C. S.
,
2007
, “
A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales
,”
J. Comput. Phys.
,
224
(
2
), pp.
1255
1292
.
30.
Atzberger
,
P. J.
,
2011
, “
Stochastic Eulerian Lagrangian Methods for Fluidstructure Interactions With Thermal Fluctuations
,”
J. Comput. Phys.
,
230
(
8
), pp.
2821
2837
.
31.
Uma
,
B.
,
Swaminathan
,
T. N.
,
Radhakrishnan
,
R.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2011
, “
Nanoparticle Brownian Motion and Hydrodynamic Interactions in the Presence of Flow Fields
,”
Phys. Fluids
,
23
(
7
), p.
073602
.
32.
Hauge
,
E. H.
, and
Martin-Löf
,
A.
,
1973
, “
Fluctuating Hydrodynamics and Brownian Motion
,”
J. Stat. Phys.
,
7
(
3
), pp.
259
281
.
33.
Zwanzig
,
R.
, and
Bixon
,
M.
,
1970
, “
Hydrodynamic Theory of the Velocity Correlation Function
,”
Phys. Rev. A
,
2
(
5
), pp.
2005
2012
.
34.
Zwanzig
,
R.
, and
Bixon
,
M.
,
1975
, “
Compressibility Effects in the Hydrodynamic Theory of Brownian Motion
,”
J. Fluid Mech.
,
69
(
01
), pp.
21
25
.
35.
Li
,
T.
,
Kheifets
,
S.
,
Medellin
,
D.
, and
Raizen
,
M.
,
2010
, “
Measurement of the Instantaneous Velocity of a Brownian Particle
,”
Science
,
328
(
5986
), pp.
1673
1675
.
36.
Huang
,
R.
,
Chavez
,
I.
,
Taute
,
K.
,
Lukic
,
B.
,
Jeney
,
S.
,
Raizen
,
M.
, and
Florin
,
E.
,
2011
, “
Direct Observation of the Full Transition From Ballistic to Diffusive Brownian Motion in a Liquid
,”
Nat. Phys.
,
7
(
7
), pp.
576
580
.
37.
Yu
,
H.-Y.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2015
, “
Composite Generalized Langevin Equation for Brownian Motion in Different Hydrodynamic and Adhesion Regimes
,”
Phys. Rev. E
,
91
(
5
), p.
052303
.
38.
Uma
,
B.
,
Radhakrishnan
,
R.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2013
, “
A Hybrid Approach for the Simulation of a Nearly Neutrally Buoyant Nanoparticle Thermal Motion in an Incompressible Newtonian Fluid Medium
,”
ASME J. Heat Transfer
,
135
(
1
), p.
011011
.
39.
Radhakrishnan
,
R.
,
Uma
,
B.
,
Liu
,
J.
,
Ayyaswamy
,
P.
, and
Eckmann
,
D.
,
2013
, “
Temporal Multiscale Approach for Nanocarrier Motion With Simultaneous Adhesion and Hydrodynamic Interactions in Targeted Drug Delivery
,”
J. Comput. Phys.
,
244
, pp.
252
263
.
40.
Zwanzig
,
R.
,
2001
,
Nonequilibrium Statistical Mechanics
,
Oxford University Press
, New York.
41.
Uma
,
B.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2012
, “
A Hybrid Formalism Combining Fluctuating Hydrodynamics and Generalized Langevin Dynamics for the Simulation of Nanoparticle Thermal Motion in an Incompressible Fluid Medium
,”
Mol. Phys.
,
110
(
11–12
), pp.
1057
1067
.
42.
Uma
,
B.
,
Swaminathan
,
T. N.
,
Ayyaswamy
,
P. S.
,
Eckmann
,
D. M.
, and
Radhakrishnan
,
R.
,
2011
, “
Generalized Langevin Dynamics of a Nanoparticle Using a Finite Element Approach: Thermostating With Correlated Noise
,”
J. Chem. Phys.
,
135
(
11
), p.
114104
.
43.
Gotoh
,
T.
, and
Kaneda
,
Y.
,
1982
, “
Effect of an Infinite Plane Wall on the Motion of a Spherical Brownian Particle
,”
J. Chem. Phys.
,
76
(
6
), pp.
3193
3197
.
44.
Pagonabarraga
,
I.
,
Hagen
,
M. H. J.
,
Lowe
,
C. P.
, and
Frenkel
,
D.
,
1998
, “
Algebraic Decay of Velocity Fluctuations Near a Wall
,”
Phys. Rev. E
,
58
(
6
), pp.
7288
7295
.
45.
Hagen
,
M. H. J.
,
Pagonabarraga
,
I.
,
Lowe
,
C. P.
, and
Frenkel
,
D.
,
1997
, “
Algebraic Decay of Velocity Fluctuations in a Confined Fluid
,”
Phys. Rev. Lett.
,
78
(
19
), pp.
3785
3788
.
46.
Felderhof
,
B. U.
,
2005
, “
Effect of the Wall on the Velocity Autocorrelation Function and Long-Time Tail of Brownian Motion
,”
J. Phys. Chem. B
,
109
(
45
), pp.
21406
21412
.
47.
Franosch
,
T.
, and
Jeney
,
S.
,
2009
, “
Persistent Correlation of Constrained Colloidal Motion
,”
Phys. Rev. E
,
79
(
3
), p.
031402
.
48.
Leal
,
G. L.
,
2007
,
Advanced Transport Phenomena
,
Cambridge University Press
,
New York
.
49.
Jeffery
,
G.
,
1915
, “
On the Steady Rotation of a Solid of Revolution in a Viscous Fluid
,”
Proc. London Math. Soc.
,
s2_14
(1), pp.
327
338
.
50.
Goldman
,
A. J.
,
Cox
,
R. G.
, and
Brenner
,
H.
,
1967
, “
Slow Viscous Motion of a Sphere Parallel to a Plane Wall. Part I. Motion Through a Quiescent Fluid
,”
Chem. Eng. Sci.
,
22
(
4
), pp.
637
651
.
51.
Vitoshkin
,
H.
,
Yu
,
H.-Y.
,
Eckmann
,
D.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2016
, “
Nanocarrier Stochastic Motion in the Inertial Regime and Hydrodynamic Interactions Close to a Cylindrical Wall
,”
Phys. Rev. Fluids
,
1
(5), p. 054104.
52.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. I.
,”
Phys. Rev.
,
37
(
4
), pp.
405
426
.
53.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. II.
,”
Phys. Rev.
,
38
(
12
), pp.
2265
2279
.
54.
Chandler
,
D.
,
1987
,
Introduction to Modern Statistical Mechanics
,
Oxford University Press
,
New York
.
55.
Shang
,
B. Z.
,
Voulgarakis
,
N. K.
, and
Chu
,
J. W.
,
2012
, “
Fluctuating Hydrodynamics for Multiscale Modeling and Simulation: Energy and Heat Transfer in Molecular Fluids
,”
J. Chem. Phys.
,
137
(
4
), p.
044117
.
56.
Voulgarakis
,
N. K.
, and
Chu
,
J. W.
,
2009
, “
Bridging Fluctuating Hydrodynamics and Molecular Dynamics Simulations of Fluids
,”
J. Chem. Phys.
,
130
(
13
), p.
134111
.
57.
Voulgarakis
,
N. K.
,
Satish
,
S.
, and
Chu
,
J. W.
,
2009
, “
Modeling the Nanoscale Viscoelasticity of Fluids by Bridging Non-Markovian Fluctuating Hydrodynamics and Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
131
(
23
), p.
234115
.
58.
Voulgarakis
,
N. K.
,
Satish
,
S.
, and
Chu
,
J. W.
,
2010
, “
Modelling the Viscoelasticity and Thermal Fluctuations of Fluids at the Nanoscale
,”
Mol. Simul.
,
36
(
7–8
), pp.
552
559
.
59.
Kou
,
S. C.
, and
Xie
,
X. S.
,
2004
, “
Generalized Langevin Equation With Fractional Gaussian Noise: Subdiffusion Within a Single Protein Molecule
,”
Phys. Rev. Lett.
,
93
(
18
), p.
180603
.
60.
Min
,
W.
,
Luo
,
G.
,
Cherayil
,
B. J.
,
Kou
,
S. C.
, and
Xie
,
X. S.
,
2005
, “
Observation of a Power-Law Memory Kernel for Fluctuations Within a Single Protein Molecule
,”
Phys. Rev. Lett.
,
94
(
19
), p.
198302
.
61.
Searles
,
D. J.
, and
Evans
,
D. J.
,
2000
, “
The Fluctuation Theorem and Greenkubo Relations
,”
J. Chem. Phys.
,
112
(
22
), pp.
9727
9735
.
62.
Ratanapisit
,
J.
,
Isbister
,
D.
, and
Ely
,
J.
,
2001
, “
Transport Properties of Fluids: Symplectic Integrators and Their Usefulness
,”
Fluid Phase Equilib.
,
183–184
, pp.
351
361
.
63.
Henry
,
A.
, and
Chen
,
G.
,
2008
, “
High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
101
(
23
), p.
235502
.
You do not currently have access to this content.