In this study, the performance of a heat sink embedded with a porous medium and nanofluids as coolants is analyzed experimentally. The nanofluid is a mixture of de-ionized water and nanoscale Al2O3 particles with three different volumetric concentrations: ζ = 0.41%, 0.58%, and 0.83%. The experimental test section is a rectangular minichannel filled with metal foam, which is electrically heated to provide a constant heat flux. The porous medium is assumed to be homogeneous and the flow regime is laminar. The result of heat transfer enhancement by slurry of Al2O3 nanofluid in porous media is studied under various flow velocities, heat flux, porous media structure, and particle concentration of nanofluid. The effect of particles volume fraction on heat transfer coefficient is also studied. This experimental study discovers and/or confirms the following hypotheses: (1) nanoparticle slurry in conjunction with metal foam has a significant effect on heat transfer rate; (2) there is an optimum permeability for the foam resulting in maximal heat transfer rate; (3) for a fixed particle concentration, smaller particles are more effective in enhancing heat transfer; and (4) increasing particle concentration results in some gains, but this trend weakens after a threshold.

References

References
1.
Tuckerman
,
D.
, and
Pease
,
R.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2004
, “
Evaluation of Single Phase Flow in Microchannels for High Flux Chip Cooling—Thermohydraulic Performance Enhancement and Fabrication Technology
,”
Second International Conference on Microchannels and Minichannels (ICMM2004)
,
American Society of Mechanical Engineers
, pp.
67
76
.
3.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.
4.
Nnanna
,
A.
,
2007
, “
Experimental Model of Temperature-Driven Nanofluid
,”
ASME J. Heat Transfer
,
129
(
6
), pp.
697
704
.
5.
Bianco
,
V.
,
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Numerical Investigation of Nanofluids Forced Convection in Circular Tubes
,”
Appl. Therm. Eng.
,
29
(
17
), pp.
3632
3642
.
6.
Sarkar
,
J.
,
Ghosh
,
P.
, and
Adil
,
A.
,
2015
, “
A Review on Hybrid Nanofluids: Recent Research, Development and Applications
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
164
177
.
7.
Lomascolo
,
M.
,
Colangelo
,
G.
,
Milanese
,
M.
, and
de Risi
,
A.
,
2015
, “
Review of Heat Transfer in Nanofluids: Conductive, Convective and Radiative Experimental Results
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
1182
1198
.
8.
Colla
,
L.
,
Marinelli
,
L.
,
Fedele
,
L.
,
Bobbo
,
S.
, and
Manca
,
O.
,
2015
, “
Characterization and Simulation of the Heat Transfer Behaviour of Water-Based Zno Nanofluids
,”
J. Nanosci. Nanotechnol.
,
15
(
5
), pp.
3599
3609
.
9.
Bianco
,
V.
,
Manca
,
O.
,
Nardini
,
S.
, and
Vafai
,
K.
,
2015
, Heat Transfer Enhancement With Nanofluids, CRC Press, Boca Raton, FL.
10.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
11.
Jung
,
J.-Y.
,
Oh
,
H.-S.
, and
Kwak
,
H.-Y.
,
2009
, “
Forced Convective Heat Transfer of Nanofluids in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
1
), pp.
466
472
.
12.
Akbarinia
,
A.
,
Abdolzadeh
,
M.
, and
Laur
,
R.
,
2011
, “
Critical Investigation of Heat Transfer Enhancement Using Nanofluids in Microchannels With Slip and Non-Slip Flow Regimes
,”
Appl. Therm. Eng.
,
31
(
4
), pp.
556
565
.
13.
Nie
,
C.
,
Marlow
,
W.
, and
Hassan
,
Y.
,
2008
, “
Discussion of Proposed Mechanisms of Thermal Conductivity Enhancement in Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
(
5
), pp.
1342
1348
.
14.
Hessamoddin Abbassi
,
C. A.
,
2006
, “
Evaluation of Heat Transfer Augmentation in a Nanofluid-Cooled Microchannel Heat Sink
,”
J. Fusion Energy
,
25
(3), pp.
187
196
.
15.
Zeinali Heris
,
S.
,
Nasr Esfahany
,
M.
, and
Etemad
,
S.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.
16.
Asirvatham
,
L. G.
,
Vishal
,
N.
,
Gangatharan
,
S. K.
, and
Lal
,
D. M.
,
2009
, “
Experimental Study on Forced Convective Heat Transfer With Low Volume Fraction of CUO/Water Nanofluid
,”
Energies
,
2
(
1
), pp.
97
119
.
17.
Peyghambarzadeh
,
S. M.
, and
Hashemabadi
,
S. H.
, S. H. M. S. J.,
2011
. “
Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluids as a New Coolant for Car Radiators
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1283
1290
.
18.
Lee
,
J.
,
Gharagozloo
,
P. E.
,
Kolade
,
B.
,
Eaton
,
J. K.
, and
Goodson
,
K. E.
,
2010
, “
Nanofluid Convection in Microtubes
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092401
.
19.
Ahuja
,
A. S.
,
1982
, “
Thermal Design of a Heat Exchanger Employing Laminar Flow of Particle Suspensions
,”
Int. J. Heat Mass Transfer
,
25
(
5
), pp.
725
728
.
20.
Michaelides
,
E. E.
,
1986
, “
Heat Transfer in Particulate Flows
,”
Int. J. Heat Mass Transfer
,
29
(
2
), pp.
265
273
.
21.
Byrne
,
M. D.
,
Hart
,
R. A.
, and
da Silva
,
A. K.
,
2012
, “
Experimental Thermal–Hydraulic Evaluation of CUO Nanofluids in Microchannels at Various Concentrations With and Without Suspension Enhancers
,”
Int. J. Heat Mass Transfer
,
55
(
9
), pp.
2684
2691
.
22.
Feng
,
Y.
, and
Kleinstreuer
,
C.
,
2010
, “
Nanofluid Convective Heat Transfer in a Parallel-Disk System
,”
Int. J. Heat Mass Transfer
,
53
(
21
), pp.
4619
4628
.
23.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3
), pp.
452
463
.
24.
Zeinali Heris
,
S.
,
Etemad
,
S. G.
, and
Nasr Esfahany
,
M.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
529
535
.
25.
Yang
,
Y.
,
Zhang
,
Z. G.
,
Grulke
,
E. A.
,
Anderson
,
W. B.
, and
Wu
,
G.
,
2005
, “
Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
48
(
6
), pp.
1107
1116
.
26.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.
27.
Inaba
,
H.
,
Kim
,
M. K.
, and
Horibe
,
A.
,
2004
, “
Melting Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurries With Plural Microcapsules Having Different Diameters
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
558
565
.
28.
Hassanipour
,
F.
, and
Lage
,
J.
,
2010
, “
Preliminary Experimental Study of a Bio-Inspired Phase-Change Particle Enhanced Capillary Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3300
3307
.
29.
Nield
,
D. A.
,
Kuznetsov
,
A. V.
, and
Xiong
,
M.
,
2003
, “
Thermally Developing Forced Convection in a Porous Medium: Parallel Plate Channel or Circular Tube with Walls at Constant Heat Flux
,”
J. Porous Media
,
6
(
3
), pp.
203
212
.
30.
Nield
,
D. A.
,
Kuznetsov
,
A.
, and
Xiong
,
M.
,
2004
, “
Thermally Developing Forced Convection in a Porous Medium: Parallel-Plate Channel or Circular Tube With Isothermal Walls
,”
J. Porous Media
,
7
(
1
), pp.
19
27
.
31.
Nield
,
D. A.
, and
Kuznetsov
,
A.
,
2010
, “
Forced Convection With Phase-Lagged Oscillatory Counterflow in a Saturated Porous Channel
,”
J. Porous Media
,
13
(
7
), pp. 601–611.
32.
Merrikh
,
A.
, and
Lage
,
J. L.
,
2005
, “
Natural Convection in Nonhomogeneous Heat-Generating Media: Comparison of Continuum and Porous-Continuum Models
,”
J. Porous Media
,
8
(
2
), pp.
149
163
.
33.
Hoffmann
,
M. R.
,
2004
, “
Application of a Simple Space-Time Averaged Porous Media Model to Flow in Densely Vegetated Channels
,”
J. Porous Media
,
7
(
3
), pp.
183
191
.
34.
Bhargavi
,
D.
,
Satyamurty
,
V.
, and
Sekhar
,
G. R.
,
2009
, “
Effect of Porous Fraction and Interfacial Stress Jump on Skin Friction and Heat Transfer in Flow Through a Channel Partially Filled With Porous Material
,”
J. Porous Media
,
12
(
11
), pp. 1065–1082.
35.
Malashetty
,
M.
,
Umavathi
,
J. C.
, and
Kumar
,
J. P.
,
2005
, “
Flow and Heat Transfer in an Inclined Channel Containing Fluid Layer Sandwiched Between Two Porous Layers
,”
J. Porous Media
,
8
(
5
), pp.
443
453
.
36.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
.
37.
Bergles
,
A.
, and
Kandlikar
,
S.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.
38.
Alkam
,
M. K.
,
Al-Nimr
,
M. A.
, and
Hamdan
,
M. O.
,
2001
, “
Enhancing Heat Transfer in Parallel-Plate Channels by Using Porous Inserts
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
931
938
.
39.
Mahdi
,
R. A.
,
Mohammed
,
H.
,
Munisamy
,
K.
, and
Saeid
,
N.
,
2015
, “
Review of Convection Heat Transfer and Fluid Flow in Porous Media With Nanofluid
,”
Renewable Sustainable Energy Rev.
,
41
(
0
), pp.
715
734
.
40.
Ghazvini
,
M.
, and
Shokouhmand
,
H.
,
2009
, “
Investigation of a Nanofluid-Cooled Microchannel Heat Sink Using Fin and Porous Media Approaches
,”
Energy Convers. Manage.
,
50
(
9
), pp.
2373
2380
.
41.
Chen
,
C.
, and
Ding
,
C.
,
2011
, “
Study on the Thermal Behavior and Cooling Performance of a Nanofluid-Cooled Microchannel Heat Sink
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
378
384
.
42.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2011
, “
Flow and Heat Transfer Over a Rotating Porous Disk in a Nanofluid
,”
Phys. B
,
406
(
9
), pp.
1767
1772
.
43.
Das
,
K.
,
2012
, “
Slip Flow and Convective Heat Transfer of Nanofluids Over a Permeable Stretching Surface
,”
Comput. Fluids
,
64
(
0
), pp.
34
42
.
44.
Maghrebi
,
M. J.
,
Nazari
,
M.
, and
Armaghani
,
T.
,
2012
, “
Forced Convection Heat Transfer of Nanofluids in a Porous Channel
,”
Transp. Porous Media
,
93
(
3
), pp.
401
413
.
45.
Servati
,
A. A.
,
Javaherdeh
,
V. K.
, and
Ashorynejad
,
H. R.
,
2014
, “
Magnetic Field Effects on Force Convection Flow of a Nanofluid in a Channel Partially Filled With Porous Media Using Lattice Boltzmann Method
,”
Adv. Powder Technol.
,
25
(
2
), pp.
666
675
.
46.
Hosseini
,
M.
,
Mohammadian
,
E.
,
Shirvani
,
M.
,
Mirzababaei
,
S.
, and
Aski
,
F. S.
,
2014
, “
Thermal Analysis of Rotating System With Porous Plate Using Nanofluid
,”
Powder Technol.
,
254
(
0
), pp.
563
571
.
47.
Hatami
,
M.
,
Sheikholeslami
,
M.
, and
Ganji
,
D.
,
2014
, “
Laminar Flow and Heat Transfer of Nanofluid Between Contracting and Rotating Disks by Least Square Method
,”
Powder Technol.
,
253
(
0
), pp.
769
779
.
48.
Hajipour
,
M.
, and
Dehkordi
,
A. M.
,
2014
, “
Mixed-Convection Flow of Al2O3–H2O Nanofluid in a Channel Partially Filled With Porous Metal Foam: Experimental and Numerical Study
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
49
56
.
49.
Kwak
,
K.
, and
Kim
,
C.
,
2005
, “
Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol
,”
Korea-Aust. Rheol. J.
,
17
(
2
), pp.
35
40
.
50.
Liu
,
M.
,
Lin
,
M. C.
, and
Wang
,
C.
,
2011
, “
Enhancements of Thermal Conductivities With Cu, Cuo, and Carbon Nanotube Nanofluids and Application of MWNT/Water Nanofluid on a Water Chiller System
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
13
.
51.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3708
.
52.
Wang
,
X.
,
Xu
,
X.
, and
Stephen
,
U. S. C.
,
1999
, “
Thermal Conductivity of Nanoparticles-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
474
480
.
53.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2008
, “
Effect of Thermophysical Properties Models on the Predicting of the Convective Heat Transfer Coefficient for Low Concentration Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
35
(
10
), pp.
1320
1326
.
54.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.