This paper focuses on the study of an innovative manifold microchannel design for air-side heat transfer enhancement that uses additive manufacturing (AM) technology. A numerical-based multi-objective optimization was performed to maximize the coefficient of performance and gravimetric heat transfer density (Q/MΔT) of air–water heat exchanger designs that incorporate either manifold-microchannel or conventional surfaces for air-side heat transfer enhancement. Performance comparisons between the manifold-microchannel and conventional heat exchangers studied under the current work show that the design based on the manifold-microchannel in conjunction with additive manufacturing promises to push the performance substantially beyond that of conventional technologies. Different scenarios based on manufacturing constraints were considered to study the effect of such constraints on the heat exchanger performance. The results clearly demonstrate that the AM-enabled complex design of the fins and manifolds can significantly improve the overall performance, based on the criteria described in this paper. Based on the current manufacturing limit, up to nearly 60% increase in gravimetric heat transfer density is possible for the manifold-microchannel heat exchanger compared to a wavy-fin heat exchanger. If the manufacturing limit (fin thickness and manifold width) can be reduced even further, an even larger improvement is possible.

References

References
1.
Xia
,
G.
,
Zhai
,
Y.
, and
Cui
,
Z.
,
2013
, “
Numerical Investigation of Thermal Enhancement in a Micro Heat Sink With Fan-Shaped Reentrant Cavities and Internal Ribs
,”
Appl. Therm. Eng.
,
58
(
1
), pp.
52
60
.
2.
Yang
,
L.
,
Tan
,
H.
,
Du
,
X.
, and
Yang
,
Y.
,
2012
, “
Thermal-Flow Characteristics of the New Wave-Finned Flat Tube Bundles in Air-Cooled Condensers
,”
Int. J. Therm. Sci.
,
53
, pp.
166
174
.
3.
Joardar
,
A.
, and
Jacobi
,
A.
,
2008
, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers
,”
Int. J. Refrigeration
,
31
(
1
), pp.
87
97
.
4.
Leu
,
J. S.
,
Wu
,
Y. H.
, and
Jang
,
J. Y.
,
2004
, “
Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers With a Pair of Block Shape Vortex Generators
,”
Int. J. Heat Mass Transfer
,
47
(
19
), pp.
4327
4338
.
5.
Yazdani
,
M.
, and
Yagoobi
,
J. S.
,
2014
, “
Heat Transfer Enhancement of Backstep Flow by Means of EHD Conduction Pumping
,”
Int. J. Heat Mass Transfer
,
73
, pp.
819
825
.
6.
Nawaz
,
K.
,
Bock
,
J.
, and
Jacobi
,
A. M.
,
2012
, “
Thermal-Hydraulic Performance of Metal Foam Heat Exchangers
,”
International Refrigeration and Air Conditioning Conference
, West Lafayette, IN, July 16–19.
7.
Morimoto
,
K.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
,
2008
, “
High Performance Recuperator With Oblique Wavy Walls
,”
ASME J. Heat Transfer
,
130
(
10
), p.
101801
.
8.
Lee
,
Y.
,
Lee
,
P.
, and
Chou
,
S.
,
2013
, “
Numerical Study of Fluid Flow and Heat Transfer in the Enhanced Microchannel With Oblique Fins
,”
ASME J. Heat Transfer
,
135
(
4
), p.
041901
.
9.
Harpole
,
G. M.
, and
Eninger
,
J. E.
,
1991
, “
Micro-Channel Heat Exchanger Optimization
,”
Semiconductor Thermal Measurement and Management Symposium
, Phoenix, AZ, Feb. 12–14, pp.
59
63
.
10.
Wang
,
Y.
, and
Ding
,
G. F.
,
2008
, “
Numerical Analysis of Heat Transfer in a Manifold Microchannel Heat Sink With High Efficient Copper Heat Spreader
,”
Microsyst. Technol.
,
14
(
3
), pp.
389
395
.
11.
Kermani
,
E.
,
Dessiatoun
,
S.
,
Shooshtari
,
A.
, and
Ohadi
,
M. M.
,
2009
, “
Experimental Investigation of Heat Transfer Performance of a Manifold Microchannel Heat Sink for Cooling of Concentrated Solar Cells
,”
IEEE
59th Electronic Components and Technology Conference, San Diego, CA, May 26–29, pp.
453
459
.
12.
Escher
,
W.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081402
.
13.
Cetegen
,
E.
,
2010
, “
Force Fed Microchannel High Heat Flux Cooling Utilizing Microgrooved Surface
,”
Ph.D. thesis
, University of Maryland, College Park, MD.
14.
Jha
,
V.
,
Dessiatoun
,
S.
,
Ohadi
,
M.
,
Shooshtari
,
A.
, and
Al-Hajri
,
E.
,
2011
, “
High Performance Micro-Grooved Evaporative Heat Transfer Surface for Low Grade Waste Heat Recovery Applications
,”
ASME
Paper No. IPACK2011-52179.
15.
Boteler
,
L.
,
Jankowski
,
N.
,
McCluskey
,
P.
, and
Morgan
,
B.
,
2012
, “
Numerical Investigation and Sensitivity Analysis of Manifold Microchannel Coolers
,”
Int. J. Heat Mass Transfer
,
55
, pp.
7698
7708
.
16.
Ohadi
,
M. M.
,
Choo
,
K.
,
Dessiatoun
,
S.
, and
Cetegen
,
E.
,
2012
,
Next Generation Micro Channel Heat Exchangers
, 1st, ed.,
Springer
,
New York
.
17.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Dessiatoun
,
S. V.
,
Ohadi
,
M. M.
, and
Hajri
,
E. A.
,
2012
, “
Simulation and Thermal Optimization of a Manifold Microchannel Flat Plate Heat Exchanger
,”
ASME
Paper No. IMECE2012-88181.
18.
Arie
,
M. A.
,
2012
, “
Numerical Modeling and Optimization of Single Phase Manifold-Microchannel Plate Heat Exchanger
,”
M.S. thesis
, University of Maryland, College Park, MD.
19.
Andhare
,
R. S.
,
2013
, “
Experimental Heat Transfer and Pressure Drop Characteristic of a Single Phase Manifold-Microchannel Plate Heat Exchanger
,” M.S. thesis, University of Maryland, College Park, MD.
20.
Boyea
,
D.
,
Shooshtari
,
A.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2013
, “
Heat Transfer and Pressure Drop Characteristics of a Liquid Cooled Manifold-Microgroove Condenser
,”
ASME
Paper No. V003T23A003.
21.
Arie
,
M. A.
,
Shooshtari
,
A.
,
Dessiatoun
,
S.
, and
Ohadi
,
M.
,
2014
, “
Thermal Optimization of an Air-Cooling Heat Exchanger Utilizing Manifold-Microchannels
,”
Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27-30, pp.
807
815
.
22.
Arie
,
M.
,
Shooshtari
,
A.
,
Dessiatoun
,
S.
,
Al-Hajri
,
E.
, and
Ohadi
,
M.
,
2015
, “
Numerical Modeling and Thermal Optimization of a Single-Phase Flow Manifold-Microchannel Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
81
, pp.
478
489
.
23.
Jha
,
V.
,
Dessiatoun
,
S.
,
Shooshtari
,
A.
,
Al-Hajri
,
E. S.
, and
Ohadi
,
M. M.
,
2015
, “
Experimental Characterization of a Nickel Alloy-Based Manifold-Microgroove Evaporator
,”
Heat Transfer Eng.
,
36
(
1
), pp.
33
42
.
24.
Andhare
,
R. S.
,
Shooshtari
,
A.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of a Flat Plate Manifold Microchannel Heat Exchanger in Counter Fow Configuration
,”
Appl. Therm. Eng.
,
96
, pp.
178
189
.
25.
Enertron
,
2013
, “
Folded Fins
,” Enertron, Inc., The Linde Group, Gilbert, AZ, accessed Dec. 2015, http://www.enertron-inc.com/resources-folded-fins.aspx
26.
Linde
,
2015
, “
Folded Fin
,” Cooler Master, Tacherting, Germany, accessed Dec. 2015, http://odm.coolermaster.com/manufacture.php?page_id=6
27.
The Linde Group
,
2015
, “
Aluminium Plate-Fin Heat Exchangers
,” Tacherting, Germany, accessed Dec. 2015, http://www.lindeus-engineering.com/internet.le.le.usa/en/images/P_3_2_e_12_150dpi136_5772.pdf
28.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.
29.
Liao
,
Y. S.
,
Chen
,
S. T.
,
Lin
,
C. S.
, and
Chuang
,
T. J.
,
2005
, “
Fabrication of High Aspect Ratio Microstructure Arrays by Micro Reverse Wire-EDM
,”
J. Micromech. Microeng.
,
15
(
8
), pp.
1547
1555
.
30.
Mahabunphachai
,
S.
, and
Koc
,
M.
,
2008
, “
Fabrication of Micro-Channel Arrays on Thin Metallic Sheet Using Internal Fluid Pressure: Investigations on Size Effects and Development of Design Guidelines
,”
J. Power Sources
,
175
(
1
), pp.
363
371
.
31.
Mei
,
F.
,
Parida
,
P. R.
,
Jiang
,
J.
,
Meng
,
W. J.
, and
Ekkad
,
S. V.
,
2008
, “
Fabrication, Assembly, and Testing of Cu-and Al-Based Microchannel Heat Exchangers
,”
J. Microelectromech. Syst.
,
17
(
4
), pp.
869
881
.
32.
Joo
,
Y.
,
Dieu
,
K.
, and
Kim
,
C.-J.
,
1995
, “
Fabrication of Monolithic Microchannels for IC Chip Cooling
,”
1995
,
Micro Electro Mechanical Systems
, Amsterdam, The Netherlands, pp.
362
367
.
33.
Kim
,
Y. H.
,
Chun
,
W. C.
,
Kim
,
J. T.
,
Pak
,
B. C.
, and
Baek
,
B. J.
,
1998
, “
Forced Air Cooling by Using Manifold Microchannel Heat Sinks
,”
J. Mech. Sci. Technol.
,
12
(
4
), pp.
709
718
.
34.
Bourell
,
D.
,
Beaman
,
J.
,
Leu
,
M.
, and
Rosen
,
D.
,
2009
, “
A Brief History of Additive Manufacturing and the 2009 Roadmap for Additive Manufacturing: Looking Back and Looking Ahead
,”
RapidTech 2009
, Istanbul, Turkey, Sept. 24–25.
35.
Michaelis
,
S.
,
Timme
,
H. J.
,
Wycisk
,
M.
, and
Binder
,
J.
,
2000
, “
Acceleration Threshold Switches From an Additive Electroplating MEMS Process
,”
Sens. Actuators A
,
85
(
1
), pp.
418
423
.
36.
Lifton
,
V. A.
,
Lifton
,
G.
, and
Simon
,
S.
,
2014
, “
Options for Additive Rapid Prototyping Methods (3D Printing) in MEMS Technology
,”
Rapid Prototyping J.
,
20
(
5
), pp.
403
412
.
37.
Clare
,
A. T.
,
Chalker
,
P. R.
,
Davies
,
S.
,
Sutcliffe
,
C. J.
, and
Tsopanos
,
S.
,
2008
, “
Selective Laser Melting of High Aspect Ratio 3D Nickel–Titanium Structures Two Way Trained for MEMS Applications
,”
Int. J. Mech. Mater. Des.
,
4
(
2
), pp.
181
187
.
38.
Zein
,
I.
,
Hutmacher
,
D. W.
,
Tan
,
K. C.
, and
Teoh
,
S. H.
,
2002
, “
Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications
,”
Biomaterials
,
23
(
4
), pp.
1169
1185
.
39.
Hutmacher
,
D. W.
,
Schantz
,
T.
,
Zein
,
I.
,
Ng
,
K. W.
,
Teoh
,
S. H.
, and
Tan
,
K. C.
,
2001
, “
Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated Via Fused Deposition Modeling
,”
J. Biomed. Mater. Res.
,
55
(
2
), pp.
203
216
.
40.
Cao
,
T.
,
Ho
,
K. H.
, and
Teoh
,
S. H.
,
2003
, “
Scaffold Design and In Vitro Study of Osteochondral Coculture in a Three-Dimensional Porous Polycaprolactone Scaffold Fabricated by Fused Deposition Modeling
,”
Tissue Eng.
,
9
(
4
), pp.
103
112
.
41.
Cheng
,
X.
,
Gurkan
,
U. A.
,
Dehen
,
C. J.
,
Tate
,
M. P.
,
Hillhouse
,
H. W.
,
Simpson
,
G. J.
, and
Akkus
,
O.
,
2008
, “
An Electrochemical Fabrication Process for the Assembly of Anisotropically Oriented Collagen Bundles
,”
Biomaterials
,
29
(
22
), pp.
3278
3288
.
42.
Melchels
,
F. P.
,
Domingos
,
M. A.
,
Klein
,
T. J.
,
Malda
,
J.
,
Bartolo
,
P. J.
, and
Hutmacher
,
D. W.
,
2012
, “
Additive Manufacturing of Tissues and Organs
,”
Prog. Polym. Sci.
,
37
(
8
), pp.
1079
1104
.
43.
Lohner
,
A.
,
1997
, “
Laser Sintering Ushers in New Route to PM Parts
,”
Metal Powder Report (MPR)
,
52
(
2
), pp.
24
30
.
44.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 3rd, ed.,
Krieger
,
Malabar, FL
.
45.
Carter
,
A.
,
2014
, Stratasys Ltd., private communication.
46.
Beaver
,
A.
,
2014
, Baltimore Aircoil Company, private communication.
47.
Acharya
,
S.
,
Bushart
,
S.
, and
Shi
,
J.
,
2013
, “
NSF/EPRI Joint Solicitation-Informational Webcast
,” EPRI and NSF, accessed Dec. 2015, http://mydocs.epri.com/docs/PublicMeetingMaterials/1346/NSF_EPRI_Pres.pdf
48.
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2009
,
Heat Transfer
,
Cambridge University Press
,
New York
.
49.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
Hoboken, NJ
.
50.
Petukhov
,
B.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
(
503
), p.
565
.
51.
Bajura
,
R.
,
1971
, “
A Model for Flow Distribution in Manifolds
,”
ASME J. Eng. Gas Turbines Power
,
93
(
1
), pp.
7
12
.
You do not currently have access to this content.