At the microscale length and smaller, solid–solid interfaces pose a significant contribution to resistance, resulting in a build-up of energy carriers, in turn leading to extreme temperature gradients within a single electronic component. These localized temperature gradients, or “hot spots,” are known to promote degradation, thus reducing device longevity and performance. To mitigate thermal management issues, it is crucial to both measure and understand conductance at interfaces in technologically relevant thin film systems. Recent trends in photonic devices have been pushing the consumption of indium in the U.S. to grow exponentially each year. Thus, we report on the temperature-dependent thermal boundary conductances at a series of metal/In-based III–V semiconductor interfaces. These measurements were made using time-domain thermoreflectance (TDTR) from 80 to 350 K. The high-temperature thermal boundary conductance results indicate, for these interfaces, that interfacial transport is dominated by elastic transmission, despite varying levels of acoustic mismatch. There is a strong direct correlation between the interfacial bond strength, approximated by the picosecond acoustics, and the thermal boundary conductance values. Both the interfacial bond strength and the overlap in the phonon density of states (PDOS) play significant roles in the magnitude of the thermal boundary conductance values. Measurements are compared against two separate predictive models, one for a perfect interface and one which accounts for disorder, such as interfacial mixing and finite grain sizes.

References

References
1.
Thiel
,
A.
, and
Koelsch
,
H.
,
1910
, “
Studies on In
,”
Z. Anorg. Chem.
,
288
, pp.
65
66
.
2.
Hilsum
,
C.
,
Rose-Innes
,
A.
, and
Henisch
,
H.
,
1961
,
Semiconducting III–V Compounds: International Series of Monographs on Semiconductors
,
Pergamon Press
, Oxford, UK.
3.
Strehlow
,
W.
, and
Cook
,
E.
,
1973
, “
Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators
,”
J. Phys. Chem. Ref. Data
,
2
(
1
), pp.
163
200
.
4.
Walletin
,
J.
,
Anttu
,
N.
,
Asoli
,
D.
,
Huffman
,
M.
,
Aberg
,
I.
,
Magnusson
,
M.
,
Siefer
,
G.
,
Fuss-Kailuweit
,
P.
,
Dimroth
,
F.
,
Witzigmann
,
B.
,
Xu
,
H.
,
Samuelson
,
L.
,
Deppert
,
K.
, and
Borgstrom
,
M.
,
2013
, “
InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit
,”
Science
,
339
(
6123
), pp.
1057
1060
.
5.
Nozik
,
A.
,
2002
, “
Quantum Dot Solar Cells
,”
Physica E
,
14
(1–2), pp.
115
120
.
6.
Ye
,
N.
,
Gleeson
,
M.
,
Sadiq
,
M.
,
Roycroft
,
B.
,
Robert
,
C.
,
Yang
,
H.
,
Zhang
,
H.
,
Morrissey
,
P.
,
Suibhne
,
N. M.
,
Thomas
,
K.
,
Gocalinska
,
A.
,
Pelucchi
,
E.
,
Phelan
,
R.
,
Kelly
,
B.
,
O'Carroll
,
J.
,
Peters
,
F.
,
Gunning
,
F.
, and
Corbett
,
B.
,
2015
, “
InP-Based Active and Passive Components for Communication Systems at 2 μm
,”
J. Lightwave Technol.
,
33
(
5
), pp.
971
975
.
7.
Dixit
,
V.
, and
Bhat
,
H.
,
2010
,
Growth and Characterization of Antimony-Based Narrow-Bandgap III–V Semiconductor Crystals for Infrared Detector Applications
,
Springer
, Berlin, pp.
327
366
.
8.
Milnes
,
A.
, and
Polyakov
,
A.
,
1993
, “
InAs: A Semiconductor for High Speed and Electro-Optical Devices
,”
Mater. Sci. Eng.
,
18
(
3
), pp.
237
259
.
9.
Lile
,
D.
,
1998
, “
The History and Future of InP Based Electronics and Optoelectronics
,”
International Conference on Indium Phosphide and Related Materials
, pp.
6
9
.
10.
Minerals Research Program
,
2016
, “
Minerals Commodity Summaries: Indium
,” U.S. Geological Survey, Reston, VA, pp.
80
81
.
11.
Baca
,
A.
,
Ren
,
F.
,
Zolper
,
J.
,
Briggs
,
R.
, and
Pearton
,
S.
,
1997
, “
A Survey of Ohmic Contacts to III–V Compound Semiconductors
,”
Thin Solid Films
,
308–309
, pp.
599
606
.
12.
Swartz
,
E.
, and
Pohl
,
R.
,
1987
, “
Thermal Resistance at Interfaces
,”
Appl. Phys. Lett.
,
51
(
26
), pp.
2200
2202
.
13.
Kittel
,
C.
,
2005
,
Introduction to Solid State Physics
,
8th ed.
,
Wiley
, Hoboken, NJ.
14.
Stevens
,
R.
,
Smith
,
A.
, and
Norris
,
P.
,
2005
, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
315
322
.
15.
Stoner
,
R.
, and
Maris
,
H.
,
1993
, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K
,”
Phys. Rev. B
,
48
(
22
), pp.
16373
16387
.
16.
Klemens
,
P.
,
1975
, “
Anharmonic Decay of Optical Phonons
,”
Phys. Rev. B
,
11
(
8
), pp.
3206
3207
.
17.
Lyeo
,
H.
, and
Cahill
,
D.
,
2006
, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
,
73
(
14
), p.
144301
.
18.
Landry
,
E.
, and
McGaughey
,
A.
,
2009
, “
Thermal Boundary Resistance From Molecular Dynamics Simulations and Theoretical Calculations
,”
Phys. Rev. B
,
80
(
16
), p.
165304
.
19.
Duda
,
J.
,
Norris
,
P.
, and
Hopkins
,
P.
,
2011
, “
On the Linear Temperature Dependence in Thermal Boundary Conductance in the Classical Limit
,”
ASME J. Heat Transfer
,
113
(
7
), p.
074501
.
20.
Hopkins
,
P.
, and
Norris
,
P.
,
2009
, “
Relative Contributions of Inelastic and Elastic Diffuse Phonon Scattering to Thermal Boundary Conductance Across Solid Interfaces
,”
ASME J. Heat Transfer
,
131
(
2
), p.
022402
.
21.
Hopkins
,
P.
,
2009
, “
Multiple Phonon Processes Contributing to Inelastic Scattering During Thermal Boundary Conductance
,”
J. Appl. Phys.
,
106
(
1
), p.
013528
.
22.
Reifenberg
,
J.
,
Chang
,
K.
,
Panzer
,
M.
,
Kim
,
S.
,
Rowlette
,
J.
,
Asheghi
,
M.
,
Wong
,
H.-S. P.
, and
Goodson
,
K.
,
2010
, “
Thermal Boundary Resistance Measurements for Phase-Change Memory Devices
,”
IEEE Electron Device Lett.
,
31
(
1
), pp.
56
58
.
23.
Duda
,
J.
, and
Hopkins
,
P.
,
2012
, “
Systematically Controlling Kapitza Conductance Via Chemical Etching
,”
Appl. Phys. Lett.
,
100
(
11
), p.
111602
.
24.
Minnich
,
A.
,
Johnson
,
J.
,
Schmidt
,
A.
,
Esfarjani
,
K.
,
Dresselhaus
,
M.
,
Nelson
,
K.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
(9), p.
095901
.
25.
Ashcroft
,
N.
, and
Mermin
,
N.
,
1976
,
Solid State Physics
,
1st ed.
,
Cengage Learning, Cornell University, Ithaca
,
NY
.
26.
Levinshtein
,
M.
,
Rumyantsev
,
S.
, and
Shur
,
M.
, eds.,
1996
,
Handbook Series on Semiconductor Parameters: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, and InSb
, Vol.
1
,
World Scientific
, Singapore.
27.
Adachi
,
S.
,
1992
,
Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP
,
Wiley
, Hoboken, NJ.
28.
Koh
,
Y.
, and
Cahill
,
D.
,
2007
, “
Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys
,”
Phys. Rev. B
,
76
(
7
), p.
075207
.
29.
Hopkins
,
P.
,
Serrano
,
J.
,
Phinney
,
L.
,
Kearney
,
S.
,
Grasser
,
T.
, and
Harris
,
C.
,
2010
, “
Criteria for Cross-Plane Dominated Thermal Transport in Multilayer Thin Film Systems During Modulated Laser Heating
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081302
.
30.
Smith
,
A.
,
Caffrey
,
A.
,
Klopf
,
M.
, and
Norris
,
P.
,
2001
, “
Importance of Signal Phase on the Transient Thermoreflectance Response as a Thermal Sensor
,” Paper No. NHTC2001-20092.
31.
Norris
,
P.
,
Smoyer
,
J.
, and
Duda
,
J.
,
2012
, “
Prediction and Measurement of Thermal Transport Across Interfaces Between Isotropic Solids and Graphitic Materials
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020910
.
32.
Norris
,
P.
,
Smoyer
,
J.
,
Redding
,
M.
, and
Larkin
,
L.
,
2014
, “
Investigation of Nanoscale Heat Transfer With Highly Versatile Phase-Locked Thermoreflectance
,”
15th International Heat Transfer Conference
, Kyoto, Japan, Aug. 10–15.
33.
Montgomery
,
D.
,
Runger
,
G.
, and
Hubele
,
N.
,
2005
,
Engineering Statistics
,
Wiley
, Hoboken, NJ.
34.
Miller
,
A.
, and
Brockhouse
,
B.
,
1968
, “
Anomalous Behavior of the Lattice Vibrations and the Electronic Specific Heat of Palladium
,”
Phys. Rev. Lett.
,
20
(
15
), pp.
798
801
.
35.
Stedman
,
R.
, and
Nilsson
,
G.
,
1966
, “
Dispersion Relations for Phonons in Aluminum at 80 K and 300 K
,”
Phys. Rev.
,
145
(
2
), pp.
492
499
.
36.
Price
,
D.
,
Rowe
,
J.
, and
Nicklow
,
R.
,
1971
, “
Lattice Dynamics of Grey Tin and Indium Antimonide
,”
Phys. Rev. B
,
3
(
4
), pp.
1268
1279
.
37.
Han
,
P.
, and
Bester
,
G.
,
2011
, “
Interatomic Potentials for the Vibrational Properties of III–V Semiconductors Nanostructures
,”
Phys. Rev. B
,
83
(
17
), p.
174304
.
38.
Beechem
,
T.
,
Graham
,
S.
,
Hopkins
,
P.
, and
Norris
,
P.
,
2007
, “
Role of Interface Disorder on Thermal Boundary Conductance Using a Virtual Crystal Approach
,”
Appl. Phys. Lett.
,
90
(
5
), p.
054104
.
39.
Beechem
,
T.
, and
Hopkins
,
P.
,
2009
, “
Predictions of Thermal Boundary Conductance for Systems of Disordered Solids and Interfaces
,”
J. Appl. Phys.
,
106
(
12
), p.
124301
.
40.
Hohensee
,
G.
,
Hsieh
,
W.
,
Losego
,
M.
, and
Cahill
,
D.
,
2012
, “
Interpreting Picosecond Acoustics in the Case of Low Interface Stiffness
,”
Rev. Sci. Instrum.
,
83
(
11
), p.
114902
.
41.
Hostetler
,
J.
,
Smith
,
A.
, and
Norris
,
P.
,
1997
, “
Thin Film Thermal Conductivity and Thickness Measurements Using Picosecond Ultrasonics
,”
Microscale Thermophys. Eng.
,
1
(3), pp.
237
244
.
42.
O'Hara
,
K.
,
Hu
,
X.
, and
Cahill
,
D.
,
2001
, “
Characterization of Nanostructured Metal Films by Picosecond Acoustics and Interferometry
,”
J. Appl. Phys.
,
90
(
9
), p.
4852
.
43.
Buyco
,
E.
, and
Davis
,
F.
,
1970
, “
Specific Heat of Aluminum From Zero to Its Melting Temperature and Beyond
,”
J. Chem. Eng. Data
,
15
(
4
), pp.
518
523
.
44.
Touloukian
,
Y.
,
1970
,
Thermophysical Properties of Matter
, Vol.
1–5
,
Purdue University
,
West Lafayette, IN
.
45.
Duda
,
J.
,
Beechem
,
T.
,
Smoyer
,
J.
,
Norris
,
P.
, and
Hopkins
,
P.
,
2010
, “
Role of Dispersion on Phononic Thermal Boundary Conductance
,”
J. Appl. Phys.
,
108
(
7
), p.
073515
.
46.
Reddy
,
P.
,
Castelino
,
K.
, and
Majumdar
,
A.
,
2005
, “
Diffuse Mismatch Model of Thermal Boundary Conductance Using Exact Phonon Dispersion
,”
Appl. Phys. Lett.
,
87
(
21
), p.
211908
.
47.
Hopkins
,
P.
,
2013
, “
Thermal Transport Across Solid Interfaces With Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance
,”
ISRN Mech. Eng.
,
2013
, p.
682586
.
48.
Gordiz
,
K.
, and
Henry
,
A.
,
2015
, “
Examining the Effects of Stiffness and Mass Difference on the Thermal Interface Conductance Between Lennard-Jones Solids
,”
Sci. Rep.
,
5
, p. 18361.
49.
Yang
,
N.
,
Luo
,
T.
,
Esfarjani
,
K.
,
Henry
,
A.
,
Tian
,
Z.
,
Shiomi
,
J.
,
Chalopin
,
Y.
,
Li
,
B.
, and
Chen
,
G.
,
2014
, “
Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations
,”
J. Comput. Theor. Nanosci.
,
12
(2), pp.
168
174
.
50.
Hohensee
,
G.
,
Wilson
,
R.
, and
Cahill
,
D.
,
2015
, “
Thermal Conductance at Metal-Diamond Interfaces at High Pressure
,”
Nat. Commun.
,
6
, p.
6578
.
51.
Shen
,
M.
,
Evans
,
W.
,
Cahill
,
D.
, and
Keblinski
,
P.
,
2011
, “
Bonding and Pressure-Tunable Interfacial Thermal Conductance
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
,
84
(
19
), pp.
1
6
.
52.
Tas
,
G.
,
Loomis
,
J.
, and
Maris
,
H.
,
1998
, “
Picosecond Ultrasonics Study of the Modification of Interfacial Bonding by Ion Implantation
,”
Appl. Phys. Lett.
,
72
(
18
), pp.
2235
2237
.
53.
Brillson
,
L.
,
Brucker
,
C.
,
Stoffel
,
N.
,
Katnani
,
A.
,
Stoffel
,
N.
,
Katnani
,
A.
, and
Margaritondo
,
G.
,
1981
, “
Abruptness of Semiconductor-Metal Interfaces
,”
Phys. Rev. Lett.
,
46
(
13
), pp. 838–841.
54.
Boscherini
,
F.
,
Shapira
,
Y.
,
Capasso
,
C.
,
Aldao
,
C.
,
Del Guidice
,
M.
, and
Weaver
,
J.
,
1987
, “
Exchange Reaction Clustering and Surface Segregation at the Al/InSb(110) Interface
,”
Phys. Rev. B
,
35
(
18
), pp.
9580
9585
.
55.
Sporken
,
R.
,
Xhonneux
,
P.
,
Caudano
,
R.
, and
Delrue
,
J.
,
1988
, “
The Formation of the Al-InSb(110) Interface
,”
Surf. Sci.
,
193
(1–2), pp.
47
56
.
56.
Kendelewicz
,
T.
,
Petro
,
W.
,
Lindau
,
I.
, and
Spicer
,
W.
,
1983
, “
Evidence of Palladium Phosphide Formation at the Pd/InP(110) Interface
,”
Phys. Rev. B
,
28
(
6
), pp.
3618
3621
.
57.
Kahn
,
A.
,
Bonapace
,
C.
,
Duke
,
C.
, and
Paton
,
A.
,
1983
, “
Structure of the Al-GaP(110) and the Al-InP(110) Interface
,”
J. Vac. Sci. Technol. B
,
1
(
3
), pp. 613–617.
58.
De Maria
,
G.
,
Gingerich
,
K.
, and
Piacente
,
V.
,
1968
, “
Vaporization of Aluminum Phosphide
,”
J. Chem. Phys.
,
49
(
10
), pp. 4705–4710.
59.
Ihm
,
J.
, and
Joannopoulos
,
J.
,
1981
, “
Ground-State Properties of GaAs and AlAs
,”
Phys. Rev. B
,
24
(
8
), pp.
4191
4197
.
You do not currently have access to this content.